48 resultados para Goodness


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current state of the practice in Blackspot Identification (BSI) utilizes safety performance functions based on total crash counts to identify transport system sites with potentially high crash risk. This paper postulates that total crash count variation over a transport network is a result of multiple distinct crash generating processes including geometric characteristics of the road, spatial features of the surrounding environment, and driver behaviour factors. However, these multiple sources are ignored in current modelling methodologies in both trying to explain or predict crash frequencies across sites. Instead, current practice employs models that imply that a single underlying crash generating process exists. The model mis-specification may lead to correlating crashes with the incorrect sources of contributing factors (e.g. concluding a crash is predominately caused by a geometric feature when it is a behavioural issue), which may ultimately lead to inefficient use of public funds and misidentification of true blackspots. This study aims to propose a latent class model consistent with a multiple crash process theory, and to investigate the influence this model has on correctly identifying crash blackspots. We first present the theoretical and corresponding methodological approach in which a Bayesian Latent Class (BLC) model is estimated assuming that crashes arise from two distinct risk generating processes including engineering and unobserved spatial factors. The Bayesian model is used to incorporate prior information about the contribution of each underlying process to the total crash count. The methodology is applied to the state-controlled roads in Queensland, Australia and the results are compared to an Empirical Bayesian Negative Binomial (EB-NB) model. A comparison of goodness of fit measures illustrates significantly improved performance of the proposed model compared to the NB model. The detection of blackspots was also improved when compared to the EB-NB model. In addition, modelling crashes as the result of two fundamentally separate underlying processes reveals more detailed information about unobserved crash causes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sampling design is critical to the quality of quantitative research, yet it does not always receive appropriate attention in nursing research. The current article details how balancing probability techniques with practical considerations produced a representative sample of Australian nursing homes (NHs). Budgetary, logistical, and statistical constraints were managed by excluding some NHs (e.g., those too difficult to access) from the sampling frame; a stratified, random sampling methodology yielded a final sample of 53 NHs from a population of 2,774. In testing the adequacy of representation of the study population, chi-square tests for goodness of fit generated nonsignificant results for distribution by distance from major city and type of organization. A significant result for state/territory was expected and was easily corrected for by the application of weights. The current article provides recommendations for conducting high-quality, probability-based samples and stresses the importance of testing the representativeness of achieved samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While many measures of viewpoint goodness have been proposed in computer graphics, none have been evaluated for ribbon representations of protein secondary structure. To fill this gap, we conducted a user study on Amazon’s Mechanical Turk platform, collecting human viewpoint preferences from 65 participants for 4 representative su- perfamilies of protein domains. In particular, we evaluated viewpoint entropy, which was previously shown to be a good predictor for human viewpoint preference of other, mostly non-abstract objects. In a second study, we asked 7 molecular biology experts to find the best viewpoint of the same protein domains and compared their choices with viewpoint entropy. Our results show that viewpoint entropy overall is a significant predictor of human viewpoint preference for ribbon representations of protein secondary structure. However, the accuracy is highly dependent on the complexity of the structure: while most participants agree on good viewpoints for small, non-globular structures with few secondary structure elements, viewpoint preference varies considerably for complex structures. Finally, experts tend to choose viewpoints of both low and high viewpoint entropy to emphasize different aspects of the respective structure.