119 resultados para Frequency-domain methods
Resumo:
In rural low-voltage networks, distribution lines are usually highly resistive. When many distributed generators are connected to such lines, power sharing among them is difficult when using conventional droop control, as the real and reactive power have strong coupling with each other. A high droop gain can alleviate this problem but may lead the system to instability. To overcome4 this, two droop control methods are proposed for accurate load sharing with frequency droop controller. The first method considers no communication among the distributed generators and regulates the output voltage and frequency, ensuring acceptable load sharing. The droop equations are modified with a transformation matrix based on the line R/X ration for this purpose. The second proposed method, with minimal low bandwidth communication, modifies the reference frequency of the distributed generators based on the active and reactive power flow in the lines connected to the points of common coupling. The performance of these two proposed controllers is compared with that of a controller, which includes an expensive high bandwidth communication system through time-domain simulation of a test system. The magnitude of errors in power sharing between these three droop control schemes are evaluated and tabulated.
Resumo:
Objective: To replicate and refine the reported association of ankylosing spondylitis (AS) with two nonsynonymous single nucleotide polymorphisms (nsSNPs) on chromosome 16q22.1. Methods: Firstly, 730 independent UK patients with AS were genotyped for rs9939768 and rs6979 and allele frequencies were compared with 2879 previously typed historic disease controls. Secondly, the two data sets were combined in meta-analyses. Finally, 5 tagging SNPs, located between rs9939768 and rs6979, were analysed in 1604 cases and 1020 controls. Results: The association of rs6979 with AS was replicated, p=0.03, OR=1.14 (95% CI 1.01 to 1.28), and a trend for association with rs9939768 detected, p=0.06, OR=1.25 (95% CI 0.99 to 1.57). Meta-analyses revealed association of both SNPs with AS, p=0.0008, OR=1.31 (95% CI 1.12 to 1.54) and p=0.0009, OR=1.15 (95% CI 1.06 to 1.23) for rs9939768 and rs6979, respectively. New associations with rs9033 and rs868213 (p=0.00002, OR=1.23 (95% CI 1.12 to 1.36) and p=0.00002 OR=1.45 (95% CI 1.22 to 1.72), respectively, were identified. Conclusions: The region on chromosome 16 that has been replicated in the present work is interesting as the highly plausible candidate gene, tumour necrosis factor receptor type 1 (TNFR1)-associated death domain (TRADD), is located between rs9033 and rs868213. It will require additional work to identify the primary genetic association(s) with AS.
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.
Resumo:
PURPOSE: To explore the effects of glaucoma and aging on low-spatial-frequency contrast sensitivity by using tests designed to assess performance of either the magnocellular (M) or parvocellular (P) visual pathways. METHODS: Contrast sensitivity was measured for spatial frequencies of 0.25 to 2 cyc/deg by using a published steady- and pulsed-pedestal approach. Sixteen patients with glaucoma and 16 approximately age-matched control subjects participated. Patients with glaucoma were tested foveally and at two midperipheral locations: (1) an area of early visual field loss, and (2) an area of normal visual field. Control subjects were assessed in matched locations. An additional group of 12 younger control subjects (aged 20-35 years) were also tested. RESULTS: Older control subjects demonstrated reduced sensitivity relative to the younger group for the steady (presumed M)- and pulsed (presumed P)-pedestal conditions. Sensitivity was reduced foveally and in the midperiphery across the spatial frequency range. In the area of early visual field loss, the glaucoma group demonstrated further sensitivity reduction relative to older control subjects across the spatial frequency range for both the steady- and pulsed-pedestal tasks. Sensitivity was also reduced in the midperipheral location of "normal" visual field for the pulsed condition. CONCLUSIONS: Normal aging results in a reduction of contrast sensitivity for the low-spatial-frequency-sensitive components of both the M and P pathways. Glaucoma results in a further reduction of sensitivity that is not selective for M or P function. The low-spatial-frequency-sensitive channels of both pathways, which are presumably mediated by cells with larger receptive fields, are approximately equivalently impaired in early glaucoma.
Resumo:
In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.
Resumo:
In this paper, a two-dimensional non-continuous seepage flow with fractional derivatives (2D-NCSF-FD) in uniform media is considered, which has modified the well known Darcy law. Using the relationship between Riemann-Liouville and Grunwald-Letnikov fractional derivatives, two modified alternating direction methods: a modified alternating direction implicit Euler method and a modified Peaceman-Rachford method, are proposed for solving the 2D-NCSF-FD in uniform media. The stability and consistency, thus convergence of the two methods in a bounded domain are discussed. Finally, numerical results are given.
Resumo:
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.
Resumo:
Purpose: The aim was to construct and advise on the use of a cost-per-wear model based on contact lens replacement frequency, to form an equitable basis for cost comparison. ---------- Methods: The annual cost of professional fees, contact lenses and solutions when wearing daily, two-weekly and monthly replacement contact lenses is determined in the context of the Australian market for spherical, toric and multifocal prescription types. This annual cost is divided by the number of times lenses are worn per year, resulting in a ‘cost-per-wear’. The model is presented graphically as the cost-per-wear versus the number of times lenses are worn each week for daily replacement and reusable (two-weekly and monthly replacement) lenses.---------- Results: The cost-per-wear for two-weekly and monthly replacement spherical lenses is almost identical but decreases with increasing frequency of wear. The cost-per-wear of daily replacement spherical lenses is lower than for reusable spherical lenses, when worn from one to four days per week but higher when worn six or seven days per week. The point at which the cost-per-wear is virtually the same for all three spherical lens replacement frequencies (approximately AUD$3.00) is five days of lens wear per week. A similar but upwardly displaced (higher cost) pattern is observed for toric lenses, with the cross-over point occurring between three and four days of wear per week (AUD$4.80). Multifocal lenses have the highest price, with cross-over points for daily versus two-weekly replacement lenses at between four and five days of wear per week (AUD$5.00) and for daily versus monthly replacement lenses at three days per week (AUD$5.50).---------- Conclusions: This cost-per-wear model can be used to assist practitioners and patients in making an informed decision in relation to the cost of contact lens wear as one of many considerations that must be taken into account when deciding on the most suitable lens replacement modality.
Resumo:
Identification of hot spots, also known as the sites with promise, black spots, accident-prone locations, or priority investigation locations, is an important and routine activity for improving the overall safety of roadway networks. Extensive literature focuses on methods for hot spot identification (HSID). A subset of this considerable literature is dedicated to conducting performance assessments of various HSID methods. A central issue in comparing HSID methods is the development and selection of quantitative and qualitative performance measures or criteria. The authors contend that currently employed HSID assessment criteria—namely false positives and false negatives—are necessary but not sufficient, and additional criteria are needed to exploit the ordinal nature of site ranking data. With the intent to equip road safety professionals and researchers with more useful tools to compare the performances of various HSID methods and to improve the level of HSID assessments, this paper proposes four quantitative HSID evaluation tests that are, to the authors’ knowledge, new and unique. These tests evaluate different aspects of HSID method performance, including reliability of results, ranking consistency, and false identification consistency and reliability. It is intended that road safety professionals apply these different evaluation tests in addition to existing tests to compare the performances of various HSID methods, and then select the most appropriate HSID method to screen road networks to identify sites that require further analysis. This work demonstrates four new criteria using 3 years of Arizona road section accident data and four commonly applied HSID methods [accident frequency ranking, accident rate ranking, accident reduction potential, and empirical Bayes (EB)]. The EB HSID method reveals itself as the superior method in most of the evaluation tests. In contrast, identifying hot spots using accident rate rankings performs the least well among the tests. The accident frequency and accident reduction potential methods perform similarly, with slight differences explained. The authors believe that the four new evaluation tests offer insight into HSID performance heretofore unavailable to analysts and researchers.
Resumo:
Identifying crash “hotspots”, “blackspots”, “sites with promise”, or “high risk” locations is standard practice in departments of transportation throughout the US. The literature is replete with the development and discussion of statistical methods for hotspot identification (HSID). Theoretical derivations and empirical studies have been used to weigh the benefits of various HSID methods; however, a small number of studies have used controlled experiments to systematically assess various methods. Using experimentally derived simulated data—which are argued to be superior to empirical data, three hot spot identification methods observed in practice are evaluated: simple ranking, confidence interval, and Empirical Bayes. Using simulated data, sites with promise are known a priori, in contrast to empirical data where high risk sites are not known for certain. To conduct the evaluation, properties of observed crash data are used to generate simulated crash frequency distributions at hypothetical sites. A variety of factors is manipulated to simulate a host of ‘real world’ conditions. Various levels of confidence are explored, and false positives (identifying a safe site as high risk) and false negatives (identifying a high risk site as safe) are compared across methods. Finally, the effects of crash history duration in the three HSID approaches are assessed. The results illustrate that the Empirical Bayes technique significantly outperforms ranking and confidence interval techniques (with certain caveats). As found by others, false positives and negatives are inversely related. Three years of crash history appears, in general, to provide an appropriate crash history duration.
Resumo:
As the use of renewable energy sources (RESs) increases worldwide, there is a rising interest on their impacts on power system operation and control. An overview of the key issues and new challenges on frequency regulation concerning the integration of renewable energy units into the power systems is presented. Following a brief survey on the existing challenges and recent developments, the impact of power fluctuation produced by variable renewable sources (such as wind and solar units) on sysstem frequency performance is also presented. An updated LFC model is introduced, and power system frequency response in the presence of RESs and associated issues is analysed. The need for the revising of frequency performance standards is emphasised. Finally, non-linear time-domain simulations on the standard 39-bus and 24-bus test systems show that the simulated results agree with those predicted analytically.
Resumo:
Background/objectives The provision of the patient bed-bath is a fundamental nursing care activity yet few quantitative data and no qualitative data are available on registered nurses’ (RNs) clinical practice in this domain in the intensive care unit (ICU). The aim of this study was to describe ICU RNs current practice with respect to the timing, frequency and duration of the patient bed-bath and the cleansing and emollient agents used. Methods The study utilised a two-phase sequential explanatory mixed method design. Phase one used a questionnaire to survey RNs and phase two employed semi-structured focus group (FG) interviews with RNs. Data was collected over 28 days across four Australian metropolitan ICUs. Ethical approval was granted from the relevant hospital and university human research ethics committees. RNs were asked to complete a questionnaire following each episode of care (i.e. bed-bath) and then to attend one of three FG interviews: RNs with less than 2 years ICU experience; RNs with 2–5 years ICU experience; and RNs with greater than 5 years ICU experience. Results During the 28-day study period the four ICUs had 77.25 beds open. In phase one a total of 539 questionnaires were returned, representing 30.5% of episodes of patient bed-baths (based on 1767 bed occupancy and one bed-bath per patient per day). In 349 bed-bath episodes 54.7% patients were mechanically ventilated. The bed-bath was given between 02.00 and 06.00 h in 161 episodes (30%), took 15–30 min to complete (n = 195, 36.2%) and was completed within the last 8 h in 304 episodes (56.8%). Cleansing agents used were predominantly pH balanced soap or liquid soap and water (n = 379, 71%) in comparison to chlorhexidine impregnated sponges/cloths (n = 86, 16.1%) or other agents such as pre-packaged washcloths (n = 65, 12.2%). In 347 episodes (64.4%) emollients were not applied after the bed-bath. In phase two 12 FGs were conducted (three FGs at each ICU) with a total of 42 RN participants. Thematic analysis of FG transcripts across the three levels of RN ICU experience highlighted a transition of patient hygiene practice philosophy from shades of grey – falling in line for inexperienced clinicians to experienced clinicians concrete beliefs about patient bed-bath needs. Conclusions This study identified variation in process and products used in patient hygiene practices in four ICUs. Further study to improve patient outcomes is required to determine the appropriate timing of patient hygiene activities and cleansing agents used to improve skin integrity.