152 resultados para Forest degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathological mineralization of articular cartilage is a characteristic feature of osteoarthritis (OA); however, the underlying mechanisms, and their relevance to cartilage degeneration, are not clear. The involvement of subchondral bone changes in OA have been reported previously with the characterization of abnormal subchondral bone mineral density (BMD), osteiod volume, altered bone mechanical parameters and an increase in bone turnover markers. A number of osteoarthritic animal models have demonstrated that subchondral bone changes often precede cartilage degeneration. In this study site specific localization of mineralization markers were detected in the OA cartilage. Chondrocytes and osteoblasts derived from OA cartilage and subchondral bone showed a significant increase in the mRNA expressions of mineralization markers. Interestingly, osteoblasts from OA subchondral bone could significantly decrease cartilage matrix expression; whereas, increase mineralization of chondrocytes (Figure 1). Osteogenic factors, such as CBFA1, ALP, and type X collagen (Col-X), were detected in chondrocytes under mineralization conditions (Figure 2). Furthermore, chondrocyte mineralization was followed by increased mRNA and protein levels of MMP-2, MMP-9 and MMP-13, all of which are detrimental to cartilage integrity in vivo. The data reported here suggests that the upregulation of subchondral bone-mineralization, typical of OA progression, causes cartilage mineralization, and that the mineralization of chondrocytes induce increased MMP levels with a subsequent degradation of the articular cartilage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest policy and forestry management in Tasmania have undergone a number of changes in the last thirty years, many explicitly aimed at improving industry sustainability, job security, and forest biodiversity conservation. Yet forestry remains a contentious issue in Tasmania, due to a number of interacting factors, most significant of which is the prevalence of a ‘command and control’ governance approach by policymakers and managers. New approaches such as multiple-stakeholder decision-making, adaptive management, and direct public participation in policymaking are needed. Such an approach has been attempted in Canada in the last decade, through the Canadian Model Forest Program, and may be suitable for Tasmania. This paper seeks to describe what the Canadian Model Forest approach is, how it may be implemented in Tasmania, and what role it may play in the shift to a new forestry paradigm. Until such a paradigm shift occurs contentions and confrontations are likely to continue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works in the field of photocatalytic oxidation of toxic organic compounds such as phenols and dyes, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and dyes are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, mode of catalyst application, and calcinations temperature can play an important role on the photocatlytic degradation of organic compounds in water environment. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent advances in TiO2 photocatalysis for the degradation of various phenols and dyes are also highlighted in this review.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the application of heterogeneous photocatalytic water purification process has gained wide attention due to its effectiveness in degrading and mineralizing the recalcitrant organic compounds as well as the possibility of utilizing the solar UV and visible light spectrum. This paper aims to review and summarize the recently published works on the titanium dioxide (TiO2) photocatalytic oxidation of pesticides and phenolic compounds, predominant in storm and waste water effluents. The effect of various operating parameters on the photocatalytic degradation of pesticides and phenols are discussed. Results reported here suggested that the photocatalytic degradation of organic compounds depends on the type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidizing agents/electron acceptors, catalyst application mode, and calcinations temperature in water environment. A substantial amount of research has focused on the enhancement of TiO2 photocatalysis by modification with metal, non-metal and ion doping. Recent developments in TiO2 photocatalysis for the degradation of various pesticides and phenols are also highlighted in this review. It is evident from the literature survey that photocatalysis has shown good potential for the removal of various organic pollutants. However, still there is a need to find out the practical utility of this technique on commercial scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, there has been an enormous amount of research and development in the area of heterogeneous photocatalytic water purification process due to its effectiveness in degrading and mineralising the recalcitrant organic compounds as well as the possibility of utilising the solar UV and visible spectrum. One hundred and twenty recently published papers are reviewed and summarised here with the focus being on the photocatalytic oxidation of phenols and their derivatives, predominant in waste water effluent. In this review, the effects of various operating parameters on the photocatalytic degradation of phenols and substituted phenols are presented. Recent findings suggested that different parameters, such as type of photocatalyst and composition, light intensity, initial substrate concentration, amount of catalyst, pH of the reaction medium, ionic components in water, solvent types, oxidising agents/electron acceptors, mode of catalyst application, and calcination temperatures can play an important role on the photocatalytic degradation of phenolic compounds in wastewater. Extensive research has focused on the enhancement of photocatalysis by modification of TiO2 employing metal, non-metal and ion doping. Recent developments in TiO2 photocatalysis for the degradation of various phenols and substituted phenols are also reviewed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heterogeneous photocatalytic oxidation process offers a versatile promise in the detoxification and disinfection of wastewater containing hazardous organic compounds such as pesticides and phenolic compounds in storm and wastewater effluent. This process has gained wide attention due to its effectiveness in degrading and mineralizing the organic compounds into harmless and often useful components. To develop an efficient photocatalytic process, titanium dioxide has been actively studied in recent years due to its excellent performance as a photocatalyst under UV light irradiation. This paper aims at critically evaluating and highlighting the recent developments of the heterogeneous photocatalytic systems with a special focus on storm and wastewater treatment applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.