203 resultados para Femtosecond spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12000-7600 cm-1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm-1. A broad spectral feature observed for ferrous ion in the 12000-9000 cm-1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm-1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm-1 region resulting from the combinations of vibrational modes of (PO4)3- units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2.H2O was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As-OH units together with the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O-H...O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2- units in the crystal structure of burgessite was proved in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral nesquehonite Mg(OH)(HCO3)•2H2O has been analysed by a combination of infrared (IR) and infrared emission spectroscopy (IES). Both techniques show OH vibrations, both stretching and deformation modes. IES proves the OH units are stable up to 450°C. The strong IR band at 934 cm-1 is evidence for MgOH deformation modes supporting the concept of HCO3- units in the molecular structure. Infrared bands at 1027, 1052 and 1098 cm-1 are attributed to the symmetric stretching modes of HCO3- and CO32- units. Infrared bands at 1419, 1439, 1511, and 1528 cm-1 are assigned to the antisymmetric stretching modes of CO32- and HCO3- units. IES supported by thermoanalytical results defines the thermal stability of nesquehonite IES defines the changes in the molecular structure of nesquehonite with temperature. The results of IR and IES supports the concept that the formula of nesquehonite is better defined as Mg(OH)(HCO3)•2H2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Raman spectra of a series of related minerals of the pinakiolite group of minerals have been collected and the spectra related to the mineral structure. These minerals are based upon an isolated BO33- ion. The site symmetry is reduced from D3h to C1. Intense Raman bands are observed for the minerals takeuchiite, pinakiolite, fredrikssonite and azoproite at 1084, 1086, 1086 and 1086 cm-1. These bands are assigned to the ν1 BO33- symmetric stretching mode. Low intensity Raman bands are observed for the minerals at 1345, 1748; 1435, 1748; 1435, 1750; 1436, 1749 cm-1. One probable assignment is to ν3 BO33- antisymmetric stretching mode. Intense Raman bands of takeuchiite, pinakiolite, fredrikssonite and azoproite at 712 cm-1 attributed to the ν2 out-of-plane bending mode. Importantly, through the comparison of the Raman spectra, the molecular structure of borate minerals with ill-defined structures can be obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of two well-defined types of koritnigite crystals from the Jáchymov ore district, Czech Republic, were recorded and interpreted. No substantial differences were observed between both crystal types. Observed Raman bands were attributed to the (AsO3OH)2- stretching and bending vibrations, stretching and bending vibrations of water molecules and hydroxyl ions. Non-interpreted Raman spectra of koritnigite from the RRUFF database, and published infrared spectra of cobaltkoritnigite were used for comparison. The O-H...O hydrogen bond lengths in the crystal structure of koritnigite were inferred from the Raman spectra and compared with those derived from the X-ray single crystal refinement. The presence of (AsO3OH)2- units in the crystal structure of koritnigite was proved from the Raman spectra which supports the conclusions of the X-ray structure analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near infrared (NIR), infrared (IR) spectroscopy and X-ray diffraction (XRD) have been applied to halotrichites of the formula FeAl2(SO4)4∙22H2O and Fe2+Fe23+(SO4)4∙22H2O. Comparison of the halotrichites and their starting materials has been used to give a better understanding of the bonding involved in these types of minerals. The vibrational spectroscopy data has shown that Fe2+ oxidises during the formation of halotrichite, no preventative measures were implemented to prevent oxidation, and this has been clearly shown by the position and broadness of electronic bands of transition metals in the NIR spectra (12500 to 7500 cm-1). It is apparent from this region that Fe3+ substitutes for Al3+ in the synthesis of halotrichite. Due to the oxidation of Fe2+ to Fe3+ the halotrichite sample contains a small portion of bilinite. This has been confirmed by XRD, peaks at 9 and 14° 2θ were observed in the halotrichite sample and are identical to the XRD pattern obtained for bilinite. Substitution of aluminium for Fe3+ has resulted in significant changes in the overall infrared and NIR spectral profiles. However, the lower wavenumber regions of the NIR spectra have very similar spectral profiles, which indicate a similar structure to halotrichite has formed for bilinite. This work has shown that iron halotrichites can be synthesised and characterised by infrared and NIR spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oriented single crystal Raman spectrum of leiteite has been obtained and the spectra related to the structure of the mineral. The intensities of the observed bands vary according to orientation allowing them to be assigned to either Ag or Bg modes. Ag bands are generally the most intense in the CAAC spectrum, followed by ACCA, CBBC, and ABBA whereas Bg bands are generally the most intense in the CBAC followed by ABCA. The CAAC and ACCA spectra are identical, as are those obtained in the CBBC and ABBA orientations. Both cross-polarised spectra are identical. Band assignments were made with respect to bridging and non-bridging As-O bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human hair fibres are ubiquitous in nature and are found frequently at crime scenes often as a result of exchange between the perpetrator, victim and/or the surroundings according to Locard's Principle. Therefore, hair fibre evidence can provide important information for crime investigation. For human hair evidence, the current forensic methods of analysis rely on comparisons of either hair morphology by microscopic examination or nuclear and mitochondrial DNA analyses. Unfortunately in some instances the utilisation of microscopy and DNA analyses are difficult and often not feasible. This dissertation is arguably the first comprehensive investigation aimed to compare, classify and identify the single human scalp hair fibres with the aid of FTIR-ATR spectroscopy in a forensic context. Spectra were collected from the hair of 66 subjects of Asian, Caucasian and African (i.e. African-type). The fibres ranged from untreated to variously mildly and heavily cosmetically treated hairs. The collected spectra reflected the physical and chemical nature of a hair from the near-surface particularly, the cuticle layer. In total, 550 spectra were acquired and processed to construct a relatively large database. To assist with the interpretation of the complex spectra from various types of human hair, Derivative Spectroscopy and Chemometric methods such as Principal Component Analysis (PCA), Fuzzy Clustering (FC) and Multi-Criteria Decision Making (MCDM) program; Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA); were utilised. FTIR-ATR spectroscopy had two important advantages over to previous methods: (i) sample throughput and spectral collection were significantly improved (no physical flattening or microscope manipulations), and (ii) given the recent advances in FTIR-ATR instrument portability, there is real potential to transfer this work.s findings seamlessly to on-field applications. The "raw" spectra, spectral subtractions and second derivative spectra were compared to demonstrate the subtle differences in human hair. SEM images were used as corroborative evidence to demonstrate the surface topography of hair. It indicated that the condition of the cuticle surface could be of three types: untreated, mildly treated and treated hair. Extensive studies of potential spectral band regions responsible for matching and discrimination of various types of hair samples suggested the 1690-1500 cm-1 IR spectral region was to be preferred in comparison with the commonly used 1750-800 cm-1. The principal reason was the presence of the highly variable spectral profiles of cystine oxidation products (1200-1000 cm-1), which contributed significantly to spectral scatter and hence, poor hair sample matching. In the preferred 1690-1500 cm-1 region, conformational changes in the keratin protein attributed to the α-helical to β-sheet transitions in the Amide I and Amide II vibrations and played a significant role in matching and discrimination of the spectra and hence, the hair fibre samples. For gender comparison, the Amide II band is significant for differentiation. The results illustrated that the male hair spectra exhibit a more intense β-sheet vibration in the Amide II band at approximately 1511 cm-1 whilst the female hair spectra displayed more intense α-helical vibration at 1520-1515cm-1. In terms of chemical composition, female hair spectra exhibit greater intensity of the amino acid tryptophan (1554 cm-1), aspartic and glutamic acid (1577 cm-1). It was also observed that for the separation of samples based on racial differences, untreated Caucasian hair was discriminated from Asian hair as a result of having higher levels of the amino acid cystine and cysteic acid. However, when mildly or chemically treated, Asian and Caucasian hair fibres are similar, whereas African-type hair fibres are different. In terms of the investigation's novel contribution to the field of forensic science, it has allowed for the development of a novel, multifaceted, methodical protocol where previously none had existed. The protocol is a systematic method to rapidly investigate unknown or questioned single human hair FTIR-ATR spectra from different genders and racial origin, including fibres of different cosmetic treatments. Unknown or questioned spectra are first separated on the basis of chemical treatment i.e. untreated, mildly treated or chemically treated, genders, and racial origin i.e. Asian, Caucasian and African-type. The methodology has the potential to complement the current forensic analysis methods of fibre evidence (i.e. Microscopy and DNA), providing information on the morphological, genetic and structural levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insight into the unique structure of hydrotalcites (HTs) has been obtained using Raman spectroscopy. Gallium-contg. HTs of formula Zn4 Ga2(CO3)(OH)12 · xH2O (2:1 ZnGa-HT), Zn6 Ga2(CO3)(OH)16 · xH2O (3:1 ZnGa-HT) and Zn8 Ga2(CO3)(OH)18 · xH2O (4:1 ZnGa-HT) have been successfully synthesized and characterised by X-ray diffraction (XRD) and Raman spectroscopy. The d(003) spacing varies from 7.62 Å for the 2:1 ZnGa-HT to 7.64 Å for the 3:1 ZnGa-HT. The 4:1 ZnGa-HT showed a decrease in the d(003) spacing, compared to the 2:1 and 3:1 compds. Raman spectroscopy complemented with selected IR data has been used to characterize the synthesized gallium-contg. HTs. Raman bands obsd. at around 1050, 1060 and 1067 cm-1 are attributed to the sym. stretching modes of the (CO32-) units. Multiple ν3 (CO32-) antisym. stretching modes are found between 1350 and 1520 cm-1, confirming multiple carbonate species in the HT structure. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands obsd. at 710 and 717 cm-1 and assigned to the ν4 (CO32-) modes support the concept of multiple carbonate species in the interlayer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2 respectively, and the non-aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise of alternating layers of [Sb(OH)6]-1 octahedra and mixed [M(H2O)6]+2 / [Sb(OH)6]-1 octahedra. Mopungite comprises hydrogen bonded layers of [Sb(OH)6]-1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb-O symmetric stretch of the [Sb(OH)6]-1 octahedron, which occurs at approximately 620 cm-1. The Raman spectrum of mopungite showed many similarities to spectra of the di-octahedral minerals informing the view that the Sb octahedra gave rise to most of the Raman bands observed, particularly below 1200 cm-1. Assignments have been proposed based on the spectral comparison between the minerals, prior literature and density field theory calculations of the vibrational spectra of the free [Sb(OH)6]-1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6-31G(d) and lanl2dz for the Sb atom. The single crystal data spectra showed good mode separation, allowing the majority of the bands to be assigned a symmetry species of A or E.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The single crystal Raman spectra of natural mineral schafarzikite FeSb2O4 from the Pernek locality of the Slovak Republic are presented for the first time. Raman spectra of natural mineral apuanite Fe2+Fe43+Sb4O12S, originating from the Apuan Alps in Italy, as well as spectra of synthetic ZnSb2O4 and arsenite mineral trippkeite CuAs2O4 are also presented for the first time. The spectra of the antimonite minerals are characterized by a strong band in the region 660 – 680 cm-1 with shoulders on either side, and a band of medium intensity near 300 cm-1. The spectrum of the arsenite mineral is characterized by a medium band near 780 cm-1 with a shoulder on the high wavenumber side and a strong band at 370 cm-1. Assignments are proposed based on the spectral comparison between the compounds, symmetry modes of the bands and prior literature. The single crystal spectra of schafarzikite showed good mode separation, allowing bands to be assigned a symmetry species of A1g, B1g, B2g or Eg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of NIR spectroscopy has been successfully demonstrated in the present study of smithsonite minerals. The fundamental observations in the NIR spectra, in addition to the anions of OH- and CO32- are Fe and Cu in terms of cation content. These ions exhibit broad absorption bands ranging from 13000 to 7000cm-1 (0.77 to 1.43 µm). One broad diagnostic absorption feature centred at 9000 cm-1 (1.11 µm) is the result of ferrous ion spin allowed transition, (5T2g ® 5Eg). The splitting of this band (>1200 cm-1) is a common feature in all the spectra of the studied samples. The light green coloured sample from Namibia show two Cu(II) bands in NIR at 8050 and 10310 cm-1 (1.24 and 0.97 µm) are assigned to 2B1g ® 2A1g and 2B1g ® 2B2g transitions. The effects of structural cations substitution (Ca2+, Fe2+, Cu2+, Cd2+ and Zn2+) on band shifts in the electronic spectra1 region of 11000-7500 cm-1 (0.91-1.33 µm) and vibrational modes of OH- and CO32- anions in 7300 to 4000 cm-1 (1.37-2.50 µm) region were used to distinguish between the smithsonites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatially offset Raman spectroscopy (SORS) is a powerful new technique for the non-invasive detection and identification of concealed substances and drugs. Here, we demonstrate the SORS technique in several scenarios that are relevant to customs screening, postal screening, drug detection and forensics applications. The examples include analysis of a multi-layered postal package to identify a concealed substance; identification of an antibiotic capsule inside its plastic blister pack; analysis of an envelope containing a powder; and identification of a drug dissolved in a clear solvent, contained in a non-transparent plastic bottle. As well as providing practical examples of SORS, the results highlight several considerations regarding the use of SORS in the field, including the advantages of different analysis geometries and the ability to tailor instrument parameters and optics to suit different types of packages and samples. We also discuss the features and benefits of SORS in relation to existing Raman techniques, including confocal microscopy, wide area illumination and the conventional backscattered Raman spectroscopy. The results will contribute to the recognition of SORS as a promising method for the rapid, chemically-specific analysis and detection of drugs and pharmaceuticals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of the uranyl containing mineral coconinoite, Fe2Al2(UO2)2(PO4)4(SO4)(OH)2•20H2O, are presented and compared with the mineral’s infrared spectra. Bands connected with (UO2)2+, (PO4)3- , (SO4)2-, (OH)- and H2O stretching and bending vibrations, are assigned. Approximate U-O bond lengths in uranyl, (UO2)2+, and O-H...O hydrogen bond lengths are calculated from the wavenumbers of the U-O stretching vibrations and (OH)- and H2O stretching vibrations, respectively, and compared with published data for similar natural and synthetic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Newberyite Mg(PO3OH)•3H2O is a mineral found in caves such as from Moorba cave, Jurien Bay, Western Australia, the Skipton Lava tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura , Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of ‘cave’ minerals. The intense sharp band at 982 cm-1 is assigned to the PO43- ν1 symmetric stretching mode. Low intensity Raman bands at 1152, 1263 and 1277 cm-1 are assigned to the PO43- ν3 antisymmetric stretching vibrations. Raman bands at 497 and 552 cm-1 are attributed to the PO43- ν4 bending modes. An intense Raman band for newberyite at 398 cm-1 with a shoulder band at 413 cm-1 is assigned to the PO43- ν2 bending modes. The values for the OH stretching vibrations provide hydrogen bond distances of 2.728Å (3267 cm-1), 2.781Å (3374cm-1), 2.868Å (3479 cm-1), and 2.918Å (3515 cm-1). Such hydrogen bond distances are typical of secondary minerals. Estimates of the hydrogen-bond distances have been made from the position of the OH stretching vibrations and show a wide range in both strong and weak bonds.