74 resultados para Fe-ZSM-5
Resumo:
The mineral lewisite, (Ca,Fe,Na)2(Sb,Ti)2O6(O,OH)7 an antimony bearing mineral has been studied by Raman spectroscopy. A comparison is made with the Raman spectra of other minerals including bindheimite, stibiconite and roméite. The mineral lewisite is characterised by an intense sharp band at 517 cm-1 with a shoulder at 507 cm-1 assigned to SbO stretching modes. Raman bands of medium intensity for lewisite are observed at 300, 356 and 400 cm-1. These bands are attributed to OSbO bending vibrations. Raman bands in the OH stretching region are observed at 3200, 3328, 3471 cm-1 with a distinct shoulder at 3542 cm-1. The latter is assigned to the stretching vibration of OH units. The first three bands are attributed to water stretching vibrations. The observation of bands in the 3200 to 3500 cm-1 region suggests that water is involved in the lewisite structure. If this is the case then the formula may be better written as Ca, Fe2+, Na)2(Sb, Ti)2(O,OH)7 •xH2O.
Resumo:
Pure Tungsten Oxide (WO3) and Iron-doped (10 at%) Tungsten Oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation techniques. The films were deposited at room temperature in high vacuum condition on glass substrate and post-heat treated at 300 oC for 1 hour. From the study of X-ray diffraction and Raman the characteristics of the as-deposited WO3 and WO3:Fe films indicated non-crystalline nature. The surface roughness of all the films showed in the order of 2.5 nm as observed using Atomic Force Microscopy (AFM). X-Ray Photoelectron Spectroscopy (XPS) analysis revealed tungsten oxide films with stoichiometry close to WO3. The addition of Fe to WO3 produced a smaller particle size and lower porosity as observed using Transmission Electron Microscopy (TEM). A slight difference in optical band gap energies of 3.22 eV and 3.12 eV were found between the as-deposited WO3 and WO3:Fe films, respectively. However, the difference in the band gap energies of the annealed films were significantly higher having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films, respectively. The heat treated samples were investigated for gas sensing applications using noise spectroscopy and doping of Fe to WO3 reduced the sensitivity to certain gasses. Detailed study of the WO3 and WO3:Fe films gas sensing properties is the subject of another paper.
Resumo:
The unusual (1:1) complex ‘adduct’ salt of copper(II) with 4,5-dichlorophthalic acid (H2DCPA), having formula [Cu(H2O)4(C8H3Cl2O4) (C8H4Cl2O4)] . (C8H3Cl2O4) has been synthesized and characterized using single-crystal X-ray diffraction. Crystals are monoclinic, space group P21/c, with Z = 4 in a cell with dimensions a = 20.1376(7), b =12.8408(4) c = 12.1910(4) Å, β = 105.509(4)o. The complex is based on discrete tetragonally distorted octahedral [CuO6] coordination centres with the four water ligands occupying the square planar sites [Cu-O, 1.962(4)-1.987(4) Å] and the monodentate carboxyl-O donors of two DCPA ligand species in the axial sites. The first of these bonds [Cu-O, 2.341(4) Å] is with an oxygen of a HDCPA monoanion, the second with an oxygen of a H2DCPA acid species [Cu-O, 2.418(4) Å]. The un-coordinated ‘adduct’ molecule is a HDCPA counter anion which is strongly hydrogen-bonded to the coordinated H2DCPA ligand [O… O, 2.503(6) Å] while a number of peripheral intra- and intermolecular hydrogen-bonding interactions give a two-dimensional network structure.
Resumo:
The selected arsenite minerals leiteite, reinerite and cafarsite have been studied by Raman spectroscopy. DFT calculations enabled the position of AsO22- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. The Raman spectrum of leiteite shows bands at 804 and 763 cm-1 assigned to the As2O42- symmetric and antisymmetric stretching modes. The most intense Raman band of leiteite is the band at 457 cm-1 and is assigned to the ν2 As2O42- bending mode. A comparison of the Raman spectrum of leiteite is made with the arsenite minerals reinerite and cafarsite.
Resumo:
The recent development of indoor wireless local area network (WLAN) standards at 2.45 GHz and 5 GHz has led to increased interest in propagation studies at these frequency bands. Within the indoor environment, human body effects can strongly reduce the quality of wireless communication systems. Human body effects can cause temporal variations and shadowing due to pedestrian movement and antenna- body interaction with portable terminals. This book presents a statistical characterisation, based on measurements, of human body effects on indoor narrowband channels at 2.45 GHz and at 5.2 GHz. A novel cumulative distribution function (CDF) that models the 5 GHz narrowband channel in populated indoor environments is proposed. This novel CDF describes the received envelope in terms of pedestrian traffic. In addition, a novel channel model for the populated indoor environment is proposed for the Multiple-Input Multiple-Output (MIMO) narrowband channel in presence of pedestrians at 2.45 GHz. Results suggest that practical MIMO systems must be sufficiently adaptive if they are to benefit from the capacity enhancement caused by pedestrian movement.
Resumo:
The crystal structures of the 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid with the aliphatic Lewis bases diisopropylamine and hexamethylenetetramine, viz. diisopropylaminium 2-carboxy-4,5-dichlorobenzoate (1) and hexamethylenetetraminium 2-carboxy-4,5-dichlorobenzoate hemihydrate (2), have been determined. Crystals of both 1 and 2 are triclinic, space group P-1, with Z = 2 in cells with a = 7.0299(5), b = 9.4712(7), c = 12.790(1)Å, α = 99.476(6), β = 100.843(6), γ = 97.578(6)o (1) and a = 7.5624(8), b = 9.8918(8), c = 11.5881(16)Å, α = 65.660(6), β = 86.583(4), γ = 86.987(8)o (2). In each, one-dimensional hydrogen-bonded chain structures are found: in 1 formed through aminium N+-H...Ocarboxyl cation-anion interactions. In 2, the chains are formed through anion carboxyl O...H-Obridging water interactions with the cations peripherally bound. In both structures, the hydrogen phthalate anions are essentially planar with short intra-species carboxylic acid O-H...Ocarboxyl hydrogen bonds [O…O, 2.381(3) Å (1) and 2.381(8) Å (2)].
Resumo:
The mixed anion mineral dixenite has been studied by Raman spectroscopy, complimented with infrared spectroscopy. The Raman spectrum of dixenite shows bands at 839 and 813 cm-1 assigned to the (AsO3)3- symmetric and antisymmetric stretching modes. The most intense Raman band of dixenite is the band at 526 cm-1 and is assigned to the ν2 AsO33- bending mode. DFT calculations enabled the position of AsO22- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. Raman bands at 1026 and 1057 cm-1 are assigned to the SiO42- symmetric stretching vibrations and at 1349 and 1386 cm-1 to the SiO42- antisymmetric stretching vibrations. Both Raman and infrared spectra indicate the presence of water in the structure of dixenite. This brings into question the commonly accepted formula of dixenite as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6. The formula may be better written as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6•xH2O.
Resumo:
We evaluated sustainability of an intervention to reduce women’s cardiovascular risk factors, determined the influence of self-efficacy, and described women’s current health. We used a mixed method approach that utilized forced choice and open-ended questionnaire items about health status, habits, and self-efficacy. Sixty women, average age 61, returned questionnaires. Women in the original intervention group continued health behaviors intended to reduce cardiovascular disease (CVD) at a higher rate than the control group, supporting the feasibility of a targeted intervention built around women’s individual goals. The role of self-efficacy in behavior change is unclear. The original intervention group reported higher self-reported health.
Resumo:
The 1:1 proton-transfer compound of the potent substituted amphetamine hallucinogen (R)-1-(8-bromobenzo[1,2-b; 4,5-b']difuran-4-yl)-2-aminopropane (common trivial name 'bromodragonfly') with 3,5-dinitrosalicylic acid, 1-(8-bromobenzo[1,2-b;4,5-b']difuran-4-yl)-2-mmoniopropane 2-carboxy-4,6-dinitrophenolate, C13H13BrNO2+ C7H3N2O7- forms hydrogen-bonded cation-anion chain substructures comprising undulating head-to-tail anion chains formed through C(8) carboxyl O-H...O(nitro) associations and incorporating the aminium groups of the cations. The intra-chain cation-anion hydrogen-bonding associations feature proximal cyclic R33(8) interactions involving both a N+-H...O(phenolate) and the carboxyl O--H...O(nitro)associations. Also present are aromatic pi-pi ring interactions [minimum ring centroid separation, 3.566(2)A; inter-plane dihedral angle, 5.13(1)deg]. A lateral hydrogen-bonding interaction between the third aminium proton and a carboxyl O acceptor link the chain substructures giving a two-dimensional sheet structure. This determination represents the first of any form of this compound and confirms that it has the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen-bonded chain substructures provided by the anions, which accommodate the aminium proton-donor groups of the cations and give cross-linking, and to the presence of cation--anion aromatic ring pi-pi interactions.
Resumo:
In the title salt, C12H11N2O2+·C7H4NO5-, the cations and anions interact through asymmetric cyclic pyridinium-carboxylate N-HO,O' hydrogen-bonding associations [graph set R12(4)], giving discrete heterodimers having weak cation-anion - aromatic ring interactions [minimum ring centroid separation = 3.7116 (9) Å]
Resumo:
In the structure of the 1:1 proton-transfer compound of 4-methylpyridine (\g-picoline) with 4,5-dichlorophthalic acid, C6H8N+ C8H3Cl2O4- . H2O, determined at 200 K, the 4,5-dichlorophthalate anions are bridged by the water molecule through O--H...O~carboxyl~ hydrogen bonds, giving zig-zag chains which extend along the c axial direction of the unit cell. The 4-methylpyridine cations are linked to the chains through single N--H...O~water~ hydrogen bonds and occupy the voids within the chains in the one-dimensional structure. The anions have the common 'planar' conformation with the short intramolecular O--H...O(carboxyl) hydrogen bond.
Resumo:
This guide explains how copyright law applies to Australian government material, how copyright can be managed to facilitate beneficial open access practices by government, how CC licences can be used to achieve open access to government material, and provides practical step-by-step guidance for agencies and their officers on licensing and use of government copyright materials under CC 2.5 Australia licences.
Resumo:
The importance of pacing for middle-distance performance is well recognized, yet previous research has produced equivocal results. Twenty-six trained male cyclists (O2peak 62.8 ± 5.9 ml · kg-1 · min-1; maximal aerobic power output 340 ± 43 W; mean ± s) performed three cycling time-trials where the total external work (102.7 ± 13.7 kJ) for each trial was identical to the best of two 5-min habituation trials. Markers of aerobic and anaerobic metabolism were assessed in 12 participants. Power output during the first quarter of the time-trials was fixed to control external mechanical work done (25.7 ± 3.4 kJ) and induce fast-, even-, and slow-starting strategies (60, 75, and 90 s, respectively). Finishing times for the fast-start time-trial (4:53 ± 0:11 min:s) were shorter than for the even-start (5:04 ± 0:11 min:s; 95% CI = 5 to 18 s, effect size = 0.65, P < 0.001) and slow-start time-trial (5:09 ± 0:11 min:s; 95% CI = 7 to 24 s, effect size = 1.00, P < 0.001). Mean O2 during the fast-start trials (4.31 ± 0.51 litres · min-1) was 0.18 ± 0.19 litres · min-1 (95% CI = 0.07 to 0.30 litres · min-1, effect size = 0.94, P = 0.003) higher than the even- and 0.18 ± 0.20 litres · min-1 (95% CI = 0.5 to 0.30 litres · min-1, effect size = 0.86, P = 0.007) higher than the slow-start time-trial. Oxygen deficit was greatest during the first quarter of the fast-start trial but was lower than the even- and slow-start trials during the second quarter of the trial. Blood lactate and pH were similar between the three trials. In conclusion, performance during a 5-min cycling time-trial was improved with the adoption of a fast- rather than an even- or slow-starting strategy.
Resumo:
Purpose: To examine the influence of two different fast-start pacing strategies on performance and oxygen consumption (V˙O2) during cycle ergometer time trials lasting ∼5 min. Methods: Eight trained male cyclists performed four cycle ergometer time trials whereby the total work completed (113 ± 11.5 kJ; mean ± SD) was identical to the better of two 5-min self-paced familiarization trials. During the performance trials, initial power output was manipulated to induce either an all-out or a fast start. Power output during the first 60 s of the fast-start trial was maintained at 471.0 ± 48.0 W, whereas the all-out start approximated a maximal starting effort for the first 15 s (mean power: 753.6 ± 76.5 W) followed by 45 s at a constant power output (376.8 ± 38.5 W). Irrespective of starting strategy, power output was controlled so that participants would complete the first quarter of the trial (28.3 ± 2.9 kJ) in 60 s. Participants performed two trials using each condition, with their fastest time trial compared. Results: Performance time was significantly faster when cyclists adopted the all-out start (4 min 48 s ± 8 s) compared with the fast start (4 min 51 s ± 8 s; P < 0.05). The first-quarter V˙O2 during the all-out start trial (3.4 ± 0.4 L·min-1) was significantly higher than during the fast-start trial (3.1 ± 0.4 L·min-1; P < 0.05). After removal of an outlier, the percentage increase in first-quarter V˙O2 was significantly correlated (r = -0.86, P < 0.05) with the relative difference in finishing time. Conclusions: An all-out start produces superior middle distance cycling performance when compared with a fast start. The improvement in performance may be due to a faster V˙O2 response rather than time saved due to a rapid acceleration.
Resumo:
Background The preservation of meniscal tissue is important to protect joint surfaces. Purpose We have an aggressive approach to meniscal repair, including repairing tears other than those classically suited to repair. Here we present the medium- to long-term outcome of meniscal repair (inside-out) in elite athletes. Study Design Case series; Level of evidence, 4. Methods Forty-two elite athletes underwent 45 meniscal repairs. All repairs were performed using an arthroscopically assisted inside-out technique. Eighty-three percent of these athletes had ACL reconstruction at the same time. Patients returned a completed questionnaire (including Lysholm and International Knee Documentation Committee [IKDC] scores). Mean follow-up was 8.5 years. Failure was defined by patients developing symptoms of joint line pain and/or locking or swelling requiring repeat arthroscopy and partial meniscectomy. Results The average Lysholm and subjective IKDC scores were 89.6 and 85.4, respectively. Eighty-one percent of patients returned to their main sport and most to a similar level at a mean time of 10.4 months after repair, reflecting the high level of ACL reconstruction in this group. We identified 11 definite failures, 10 medial and 1 lateral meniscus, that required excision; this represents a 24% failure rate. We identified 1 further patient who had possible failed repairs, giving a worst-case failure rate of 26.7% at a mean of 42 months after surgery. However, 7 of these failures were associated with a further injury. Therefore, the atraumatic failure rate was 11%. Age and size and location of the tears were not associated with a higher failure rate. Medial meniscal repairs were significantly more likely to fail than lateral meniscal repairs, with a failure rate of 36.4% and 5.6%, respectively (P < .05). Conclusion Meniscal repair and healing are possible, and most elite athletes can return to their preinjury level of activity.