116 resultados para Exponential e logarithmic quaternion functions
Resumo:
This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.
Resumo:
Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, very few attempts have been made to explore the structure damage with noise polluted data which is unavoidable effect in real world. The measurement data are contaminated by noise because of test environment as well as electronic devices and this noise tend to give error results with structural damage identification methods. Therefore it is important to investigate a method which can perform better with noise polluted data. This paper introduces a new damage index using principal component analysis (PCA) for damage detection of building structures being able to accept noise polluted frequency response functions (FRFs) as input. The FRF data are obtained from the function datagen of MATLAB program which is available on the web site of the IASC-ASCE (International Association for Structural Control– American Society of Civil Engineers) Structural Health Monitoring (SHM) Task Group. The proposed method involves a five-stage process: calculation of FRFs, calculation of damage index values using proposed algorithm, development of the artificial neural networks and introducing damage indices as input parameters and damage detection of the structure. This paper briefly describes the methodology and the results obtained in detecting damage in all six cases of the benchmark study with different noise levels. The proposed method is applied to a benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring, which was developed in order to facilitate the comparison of various damage identification methods. The illustrated results show that the PCA-based algorithm is effective for structural health monitoring with noise polluted FRFs which is of common occurrence when dealing with industrial structures.
Resumo:
Objective: To use our Bayesian method of motor unit number estimation (MUNE) to evaluate lower motor neuron degeneration in ALS. Methods: In subjects with ALS we performed serial MUNE studies. We examined the repeatability of the test and then determined whether the loss of MUs was fitted by an exponential or Weibull distribution. Results: The decline in motor unit (MU) numbers was well-fitted by an exponential decay curve. We calculated the half life of MUs in the abductor digiti minimi (ADM), abductor pollicis brevis (APB) and/or extensor digitorum brevis (EDB) muscles. The mean half life of the MUs of ADM muscle was greater than those of the APB or EDB muscles. The half-life of MUs was less in the ADM muscle of subjects with upper limb than in those with lower limb onset. Conclusions: The rate of loss of lower motor neurons in ALS is exponential, the motor units of the APB decay more quickly than those of the ADM muscle and the rate of loss of motor units is greater at the site of onset of disease. Significance: This shows that the Bayesian MUNE method is useful in following the course and exploring the clinical features of ALS. 2012 International Federation of Clinical Neurophysiology.
Resumo:
A Jacobian-free variable-stepsize method is developed for the numerical integration of the large, stiff systems of differential equations encountered when simulating transport in heterogeneous porous media. Our method utilises the exponential Rosenbrock-Euler method, which is explicit in nature and requires a matrix-vector product involving the exponential of the Jacobian matrix at each step of the integration process. These products can be approximated using Krylov subspace methods, which permit a large integration stepsize to be utilised without having to precondition the iterations. This means that our method is truly "Jacobian-free" - the Jacobian need never be formed or factored during the simulation. We assess the performance of the new algorithm for simulating the drying of softwood. Numerical experiments conducted for both low and high temperature drying demonstrates that the new approach outperforms (in terms of accuracy and efficiency) existing simulation codes that utilise the backward Euler method via a preconditioned Newton-Krylov strategy.
Resumo:
The research described in this paper forms part of an in-depth investigation of safety culture in one of Australia’s largest construction companies. The research builds on a previous qualitative study with organisational safety leaders and further investigates how safety culture is perceived and experienced by organisational members, as well as how this relates to their safety behaviour and related outcomes at work. Participants were 2273 employees of the case study organisation, with 689 from the Construction function and 1584 from the Resources function. The results of several analyses revealed some interesting organisational variance on key measures. Specifically, the Construction function scored significantly higher on all key measures: safety climate, safety motivation, safety compliance, and safety participation. The results are discussed in terms of relevance in an applied research context.
Resumo:
Passive air samplers (PAS) consisting of polyurethane foam (PUF) disks were deployed at 6 outdoor air monitoring stations in different land use categories (commercial, industrial, residential and semi-rural) to assess the spatial distribution of polybrominated diphenyl ethers (PBDEs) in the Brisbane airshed. Air monitoring sites covered an area of 1143 km2 and PAS were allowed to accumulate PBDEs in the city's airshed over three consecutive seasons commencing in the winter of 2008. The average sum of five (∑5) PBDEs (BDEs 28, 47, 99, 100 and 209) levels were highest at the commercial and industrial sites (12.7 ± 5.2 ng PUF−1), which were relatively close to the city center and were a factor of 8 times higher than residential and semi-rural sites located in outer Brisbane. To estimate the magnitude of the urban ‘plume’ an empirical exponential decay model was used to fit PAS data vs. distance from the CBD, with the best correlation observed when the particulate bound BDE-209 was not included (∑5-209) (r2 = 0.99), rather than ∑5 (r2 = 0.84). At 95% confidence intervals the model predicts that regardless of site characterization, ∑5-209 concentrations in a PAS sample taken between 4–10 km from the city centre would be half that from a sample taken from the city centre and reach a baseline or plateau (0.6 to 1.3 ng PUF−1), approximately 30 km from the CBD. The observed exponential decay in ∑5-209 levels over distance corresponded with Brisbane's decreasing population density (persons/km2) from the city center. The residual error associated with the model increased significantly when including BDE-209 levels, primarily due to the highest level (11.4 ± 1.8 ng PUF−1) being consistently detected at the industrial site, indicating a potential primary source at this site. Active air samples collected alongside the PAS at the industrial air monitoring site (B) indicated BDE-209 dominated congener composition and was entirely associated with the particulate phase. This study demonstrates that PAS are effective tools for monitoring citywide regional differences however, interpretation of spatial trends for POPs which are predominantly associated with the particulate phase such as BDE-209, may be restricted to identifying ‘hotspots’ rather than broad spatial trends.
Resumo:
In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The steady problem of free surface flow due to a submerged line source is revisited for the case in which the fluid depth is finite and there is a stagnation point on the free surface directly above the source. Both the strength of the source and the fluid speed in the far field are measured by a dimensionless parameter, the Froude number. By applying techniques in exponential asymptotics, it is shown that there is a train of periodic waves on the surface of the fluid with an amplitude which is exponentially small in the limit that the Froude number vanishes. This study clarifies that periodic waves do form for flows due to a source, contrary to a suggestion by Chapman & Vanden-Broeck (2006, J. Fluid Mech., 567, 299--326). The exponentially small nature of the waves means they appear beyond all orders of the original power series expansion; this result explains why attempts at describing these flows using a finite number of terms in an algebraic power series incorrectly predict a flat free surface in the far field.
Resumo:
In 1980 Alltop produced a family of cubic phase sequences that nearly meet the Welch bound for maximum non-peak correlation magnitude. This family of sequences were shown by Wooters and Fields to be useful for quantum state tomography. Alltop’s construction used a function that is not planar, but whose difference function is planar. In this paper we show that Alltop type functions cannot exist in fields of characteristic 3 and that for a known class of planar functions, x^3 is the only Alltop type function.
Resumo:
This paper provides a commentary on the contribution by Dr Chow who questioned whether the functions of learning are general across all categories of tasks or whether there are some task-particular aspects to the functions of learning in relation to task type. Specifically, they queried whether principles and practice for the acquisition of sport skills are different than what they are for musical, industrial, military and human factors skills. In this commentary we argue that ecological dynamics contains general principles of motor learning that can be instantiated in specific performance contexts to underpin learning design. In this proposal, we highlight the importance of conducting skill acquisition research in sport, rather than relying on empirical outcomes of research from a variety of different performance contexts. Here we discuss how task constraints of different performance contexts (sport, industry, military, music) provide different specific information sources that individuals use to couple their actions when performing and acquiring skills. We conclude by suggesting that his relationship between performance task constraints and learning processes might help explain the traditional emphasis on performance curves and performance outcomes to infer motor learning.
Resumo:
The current study examined the structure of the volunteer functions inventory within a sample of older individuals (N = 187). The career items were replaced with items examining the concept of continuity of work, a potentially more useful and relevant concept for this population. Factor analysis supported a four factor solution, with values, social and continuity emerging as single factors and enhancement and protective items loading together on a single factor. Understanding items did not load highly on any factor. The values and continuity functions were the only dimensions to emerge as predictors of intention to volunteer. This research has important implications for understanding the motivation of older adults to engage in contemporary volunteering settings.
Resumo:
Robust hashing is an emerging field that can be used to hash certain data types in applications unsuitable for traditional cryptographic hashing methods. Traditional hashing functions have been used extensively for data/message integrity, data/message authentication, efficient file identification and password verification. These applications are possible because the hashing process is compressive, allowing for efficient comparisons in the hash domain but non-invertible meaning hashes can be used without revealing the original data. These techniques were developed with deterministic (non-changing) inputs such as files and passwords. For such data types a 1-bit or one character change can be significant, as a result the hashing process is sensitive to any change in the input. Unfortunately, there are certain applications where input data are not perfectly deterministic and minor changes cannot be avoided. Digital images and biometric features are two types of data where such changes exist but do not alter the meaning or appearance of the input. For such data types cryptographic hash functions cannot be usefully applied. In light of this, robust hashing has been developed as an alternative to cryptographic hashing and is designed to be robust to minor changes in the input. Although similar in name, robust hashing is fundamentally different from cryptographic hashing. Current robust hashing techniques are not based on cryptographic methods, but instead on pattern recognition techniques. Modern robust hashing algorithms consist of feature extraction followed by a randomization stage that introduces non-invertibility and compression, followed by quantization and binary encoding to produce a binary hash output. In order to preserve robustness of the extracted features, most randomization methods are linear and this is detrimental to the security aspects required of hash functions. Furthermore, the quantization and encoding stages used to binarize real-valued features requires the learning of appropriate quantization thresholds. How these thresholds are learnt has an important effect on hashing accuracy and the mere presence of such thresholds are a source of information leakage that can reduce hashing security. This dissertation outlines a systematic investigation of the quantization and encoding stages of robust hash functions. While existing literature has focused on the importance of quantization scheme, this research is the first to emphasise the importance of the quantizer training on both hashing accuracy and hashing security. The quantizer training process is presented in a statistical framework which allows a theoretical analysis of the effects of quantizer training on hashing performance. This is experimentally verified using a number of baseline robust image hashing algorithms over a large database of real world images. This dissertation also proposes a new randomization method for robust image hashing based on Higher Order Spectra (HOS) and Radon projections. The method is non-linear and this is an essential requirement for non-invertibility. The method is also designed to produce features more suited for quantization and encoding. The system can operate without the need for quantizer training, is more easily encoded and displays improved hashing performance when compared to existing robust image hashing algorithms. The dissertation also shows how the HOS method can be adapted to work with biometric features obtained from 2D and 3D face images.
Resumo:
This thesis investigated the viability of using Frequency Response Functions in combination with Artificial Neural Network technique in damage assessment of building structures. The proposed approach can help overcome some of limitations associated with previously developed vibration based methods and assist in delivering more accurate and robust damage identification results. Excellent results are obtained for damage identification of the case studies proving that the proposed approach has been developed successfully.