122 resultados para Environmental quality
Resumo:
Following the success of Coalbed Natural Gas (CBNG) operations in the United States, companies in Australia and New Zealand have been actively exploring and developing this technology for the last two decades. In particular, the Bowen and Surat basins in Queensland, Australia, have undergone extensive CBNG development. Unfortunately, awareness of potential environmental problems associated with CBNG abstraction has not been widespread and legislation has at times struggled to keep up with rapid development. In Australia, the combined CBNG resource for both the Bowen and Surat basins has been estimated at approximately 10,500 PJ with gas content as high as 10 m3/tonne of coal. There are no official estimates for the magnitude of the CBNG resource in New Zealand but initial estimates suggest this could be up to 1,300 PJ with gas content ranging from 1 to 5 m3/tonne of coal. In Queensland, depressurization of the Walloon Coal Measures to recover CBNG has the potential to induce drawdown in adjacent deep aquifer systems through intraformational groundwater flow. In addition, CBNG operators have been disposing their co-produced water by using large unlined ponds, which is not the best practice for managing co-produced water. CBNG waters in Queensland have the typical geochemical signature associated with CBNG waters (Van Voast, 2003) and thus have the potential to impair soils and plant growth where land disposal is considered. Water quality from exploration wells in New Zealand exhibit the same characteristics although full scale production has not yet begun. In general, the environmental impacts that could arise from CBNG water extraction depend on the aquifer system, the quantity and quality of produced water, and on the method of treatment and disposal being used. Understanding these impacts is necessary to adequately manage CBNG waters so that environmental effects are minimized; if properly managed, CBNG waters can be used for beneficial applications and can become a valuable resource to stakeholders.
Resumo:
Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
The variability of input parameters is the most important source of overall model uncertainty. Therefore, an in-depth understanding of the variability is essential for uncertainty analysis of stormwater quality model outputs. This paper presents the outcomes of a research study which investigated the variability of pollutants build-up characteristics on road surfaces in residential, commercial and industrial land uses. It was found that build-up characteristics vary highly even within the same land use. Additionally, industrial land use showed relatively higher variability of maximum build-up, build-up rate and particle size distribution, whilst the commercial land use displayed a relatively higher variability of pollutant-solid ratio. Among the various build-up parameters analysed, D50 (volume-median-diameter) displayed the relatively highest variability for all three land uses.
Resumo:
In today’s information society, electronic tools, such as computer networks for the rapid transfer of data and composite databases for information storage and management, are critical in ensuring effective environmental management. In particular environmental policies and programs for federal, state, and local governments need a large volume of up-to-date information on the quality of water, air, and soil in order to conserve and protect natural resources and to carry out meteorology. In line with this, the utilization of information and communication technologies (ICTs) is crucial to preserve and improve the quality of life. In handling tasks in the field of environmental protection a range of environmental and technical information is often required for a complex and mutual decision making in a multidisciplinary team environment. In this regard e-government provides a foundation of the transformative ICT initiative which can lead to better environmental governance, better services, and increased public participation in environmental decision- making process.
Resumo:
Organoclays were synthesised through ion exchange of a single surfactant for sodium ions, and characterised by a range of method including X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The change in surface properties of montmorillonite and organoclays intercalated with the surfactant, tetradecyltrimethylammonium bromide (TDTMA) were determined using XRD through the change in basal spacing and the expansion occurred by the adsorbed p-nitrophenol. The changes of interlayer spacing were observed in TEM. In addition, the surface measurement such as specific surface area and pore volume was measured and calculated using BET method, this suggested the loaded surfactant is highly important to determine the sorption mechanism onto organoclays. The collected results of XPS provided the chemical composition of montmorillonite and organoclays, and the high-resolution XPS spectra offered the chemical states of prepared organoclays with binding energy. Using TGA and FT-IR, the confirmation of intercalated surfactant was investigated. The collected data from various techniques enable an understanding of the changes in structure and surface properties. This study is of importance to provide mechanisms for the adsorption of organic molecules, especially in contaminated environmental sites and polluted waters.
Resumo:
Inadequate air quality and the inhalation of airborne pollutants pose many risks to human health and wellbeing, and are listed among the top environmental risks worldwide. The importance of outdoor air quality was recognised in the 1950s and indoor air quality emerged as an issue some time later and was soon recognised as having an equal, if not greater importance than outdoor air quality. Identification of ambient air pollution as a health hazard was followed by steps, undertaken by a broad range of national and international professional and government organisations, aimed at reduction or elimination of the hazard. However, the process of achieving better air quality is still in progress. The last 10 years or so have seen an unprecedented increase in the interest in, and attention to, airborne particles, with a special focus on their finer size fractions, including ultrafine (< 0.1 m) and their subset, nano particles (< 0.05 m). This paper discusses the current status of scientific knowledge on the links between air quality and health, with a particular focus on airborne particulate matter, and the directions taken by national and international bodies to improve air quality.
Resumo:
Modelling an environmental process involves creating a model structure and parameterising the model with appropriate values to accurately represent the process. Determining accurate parameter values for environmental systems can be challenging. Existing methods for parameter estimation typically make assumptions regarding the form of the Likelihood, and will often ignore any uncertainty around estimated values. This can be problematic, however, particularly in complex problems where Likelihoods may be intractable. In this paper we demonstrate an Approximate Bayesian Computational method for the estimation of parameters of a stochastic CA. We use as an example a CA constructed to simulate a range expansion such as might occur after a biological invasion, making parameter estimates using only count data such as could be gathered from field observations. We demonstrate ABC is a highly useful method for parameter estimation, with accurate estimates of parameters that are important for the management of invasive species such as the intrinsic rate of increase and the point in a landscape where a species has invaded. We also show that the method is capable of estimating the probability of long distance dispersal, a characteristic of biological invasions that is very influential in determining spread rates but has until now proved difficult to estimate accurately.
Resumo:
Urban stormwater quality is multifaceted and the use of a limited number of factors to represent catchment characteristics may not be adequate to explain the complexity of water quality response to a rainfall event or site-to-site differences in stormwater quality modelling. This paper presents the outcomes of a research study which investigated the adequacy of using land use and impervious area fraction only, to represent catchment characteristics in urban stormwater quality modelling. The research outcomes confirmed the inadequacy of the use of these two parameters alone to represent urban catchment characteristics in stormwater quality prediction. Urban form also needs to be taken into consideration as it was found have an important impact on stormwater quality by influencing pollutant generation, build-up and wash-off. Urban form refers to characteristics related to an urban development such as road layout, spatial distribution of urban areas and urban design features.
Resumo:
It is nearly 10 years since the introduction of s 299(1)(f) Corporations Act , which requires the disclosure of information regarding a company's environmental performance within its annual report. This provision has generated considerable debate in the years since its introduction, fundamentally between proponents of either a voluntary or mandatory environmental reporting framework. This study examines the adequacy of the current regulatory framework. The environmental reporting practices of 24 listed companies in the resources industries are assessed relative to a standard set by the Global Reporting Initiative (GRI) Sustainability Reporting Guidelines. These Guidelines are argued to represent "international best practice" in environmental reporting and a "scorecard" approach is used to score the quality of disclosure according to this voluntary benchmark. Larger companies in the sample tend to report environmental information over and above the level required by legislation. Some, but not all companies present a stand-alone environmental/sustainability report. However, smaller companies provide minimal information in compliance with s 299(1)(f) . The findings indicate that "international best practice" environmental reporting is unlikely to be achieved by Australian companies under the current regulatory framework. In the current regulatory environment that scrutinises s 299(1)(f) , this article provides some preliminary evidence of the quality of disclosures generated in the Australian market.
Resumo:
Monitoring environmental health is becoming increasingly important as human activity and climate change place greater pressure on global biodiversity. Acoustic sensors provide the ability to collect data passively, objectively and continuously across large areas for extended periods. While these factors make acoustic sensors attractive as autonomous data collectors, there are significant issues associated with large-scale data manipulation and analysis. We present our current research into techniques for analysing large volumes of acoustic data efficiently. We provide an overview of a novel online acoustic environmental workbench and discuss a number of approaches to scaling analysis of acoustic data; online collaboration, manual, automatic and human-in-the loop analysis.
Resumo:
Blends of lignin and poly(hydroxybutyrate) (PHB) were obtained by melt extrusion. They were buried in a garden soil for up to 12 months, and the extent and mechanism of degradation were investigated by gravimetric analysis, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Fourier transform infra-red spectroscopy (FTIR) over the entire range of compositions. The PHB films were disintegrated and lost 45 wt% of mass within 12 months. This value dropped to 12 wt% of mass when only 10 wt% of lignin was present, suggesting that lignin both inhibited and slowed down the rate of PHB degradation. TGA and DSC indicated structural changes, within the lignin/PHB matrix, with burial time, while FTIR results confirmed the fragmentation of the PHB polymer. XPS revealed an accumulation of biofilms on the surface of buried samples, providing evidence of a biodegradation mechanism. Significant surface roughness was observed with PHB films due to microbial attack caused by both loosely and strongly associated micro-organisms. The presence of lignin in the blends may have inhibited the colonisation of the micro-organisms and caused the blends to be more resistant to microbial attack. Analysis suggested that lignin formed strong hydrogen bonds with PHB in the buried samples and it is likely that the rate of breakdown of PHB is reduced, preventing rapid degradation of the blends.
Resumo:
Bacterially mediated iron redox cycling exerts a strong influence on groundwater geochemistry, but few studies have investigated iron biogeochemical processes in coastal alluvial aquifers from a microbiological viewpoint. The shallow alluvial aquifer located adjacent to Poona estuary on the subtropical Southeast Queensland coast represents a redox-stratified system where iron biogeochemical cycling potentially affects water quality. Using a 300 m transect of monitoring wells perpendicular to the estuary, we examined groundwater physico-chemical conditions and the occurrence of cultivable bacterial populations involved in iron (and manganese, sulfur) redox reactions in this aquifer. Results showed slightly acidic and near-neutral pH, suboxic conditions and an abundance of dissolved iron consisting primarily of iron(II) in the majority of wells. The highest level of dissolved iron(III) was found in a well proximal to the estuary most likely a result of iron curtain effects due to tidal intrusion. A number of cultivable, (an)aerobic bacterial populations capable of diverse carbon, iron, or sulfur metabolism coexisted in groundwater redox transition zones. Our findings indicated aerobic, heterotrophic respiration and bacterially mediated iron/sulfur redox reactions were integral to carbon cycling in the aquifer. High abundances of dissolved iron and cultivable iron and sulfur bacterial populations in estuary-adjacent aquifers have implications for iron transport to marine waters. This study demonstrated bacterially mediated iron redox cycling and associated biogeochemical processes in subtropical coastal groundwaters using culture-based methods.
Resumo:
Baseline monitoring of groundwater quality aims to characterize the ambient condition of the resource and identify spatial or temporal trends. Sites comprising any baseline monitoring network must be selected to provide a representative perspective of groundwater quality across the aquifer(s) of interest. Hierarchical cluster analysis (HCA) has been used as a means of assessing the representativeness of a groundwater quality monitoring network, using example datasets from New Zealand. HCA allows New Zealand's national and regional monitoring networks to be compared in terms of the number of water-quality categories identified in each network, the hydrochemistry at the centroids of these water-quality categories, the proportions of monitoring sites assigned to each water-quality category, and the range of concentrations for each analyte within each water-quality category. Through the HCA approach, the National Groundwater Monitoring Programme (117 sites) is shown to provide a highly representative perspective of groundwater quality across New Zealand, relative to the amalgamated regional monitoring networks operated by 15 different regional authorities (680 sites have sufficient data for inclusion in HCA). This methodology can be applied to evaluate the representativeness of any subset of monitoring sites taken from a larger network.
Resumo:
Modern toxicology investigates a wide array of both old and new health hazards. Priority setting is needed to select agents for research from the plethora of exposure circumstances. The changing societies and a growing fraction of the aged have to be taken into consideration. A precise exposure assessment is of importance for risk estimation and regulation. Toxicology contributes to the exploration of pathomechanisms to specify the exposure metrics for risk estimation. Combined effects of co-existing agents are not yet sufficiently understood. Animal experiments allow a separate administration of agents which can not be disentangled by epidemiological means, but their value is limited for low exposure levels in many of today’s settings. As an experimental science, toxicology has to keep pace with the rapidly growing knowledge about the language of the genome and the changing paradigms in cancer development. During the pioneer era of assembling a working draft of the human genome, toxicogenomics has been developed. Gene and pathway complexity have to be considered when investigating gene–environment interactions. For a best conduct of studies, modern toxicology needs a close liaison with many other disciplines like epidemiology and bioinformatics.