223 resultados para Embryo viability
Resumo:
The formation of hypertrophic scars is a frequent medical outcome of wound repair and often requires further therapy with treatments such as Silicone Gel Sheets (SGS) or apoptosis-inducing agents, including bleomycin. Although widely used, knowledge regarding SGS and their mode of action is limited. Preliminary research has shown that small amounts of amphiphilic silicone present in SGS have the ability to move into skin during treatment. We demonstrate herein that a commercially available analogue of these amphiphilic siloxane species, the rake copolymer GP226, decreases collagen synthesis upon exposure to cultures of fibroblasts derived from hypertrophic scars (HSF). By size exclusion chromatography, GP226 was found to be a mixture of siloxane species, containing five fractions of different molecular weight. By studies of collagen production, cell viability and proliferation, it was revealed that a low molecular weight fraction (fraction IV) was the most active, reducing the number of viable cells present following treatment and thereby reducing collagen production as a result. Upon exposure of fraction IV to human keratinocytes, viability and proliferation was also significantly affected. HSF undergoing apoptosis after application of fraction IV were also detected via real-time microscopy and by using the TUNEL assay. Taken together, these data suggests that these amphiphilic siloxanes could be potential non-invasive substitutes to apoptotic-inducing chemical agents that are currently used as scar treatments.
Resumo:
The aim of this paper is to advance understandings of the processes of cluster-building and evolution, or transformative and adaptive change, through the conscious design and reflective activities of private and public actors. A model of transformation is developed which illustrates the importance of actors becoming exposed to new ideas and visions for industrial change by political entrepreneurs and external networks. Further, actors must be guided in their decision-making and action by the new vision, and this requires that they are persuaded of its viability through the provision of test cases and supportive resources and institutions. In order for new ideas to become guiding models, actors must be convinced of their desirability through the portrayal of models as a means of confronting competitive challenges and serving the economic interests of the city/region. Subsequent adaptive change is iterative and reflexive, involving a process of strategic learning amongst key industrial and political actors.
Resumo:
Ensuring the long term viability of reef environments requires essential monitoring of many aspects of these ecosystems. However, the sheer size of these unstructured environments (for example Australia’s Great Barrier Reef pose a number of challenges for current monitoring platforms which are typically remote operated and required significant resources and infrastructure. Therefore, a primary objective of the CSIRO robotic reef monitoring project is to develop and deploy a large number of AUV teams to perform broadscale reef surveying. In order to achieve this, the platforms must be cheap, even possibly disposable. This paper presents the results of a preliminary investigation into the performance of a low-cost sensor suite and associated processing techniques for vision and inertial-based navigation within a highly unstructured reef environment.
Resumo:
The pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for seeded cells to organize into a functioning tissue. In this report we have investigated the effects of different concentrations of silk fibroin protein on three-dimensional (3D) scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by the freeze drying technique, with the pore sizes ranging from 50 to 300 lm. The pore sizes of the scaffolds decreased as the concentration of fibroin protein increased. Human bone marrow mesenchymal stromal cells (BMSC) transfected with the BMP7 gene were cultured in these scaffolds. A cell viability colorimetric assay, alkaline phosphatase assay and reverse transcription-polymerase chain reaction were performed to analyze the effect of pore size on cell growth, the secretion of extracellular matrix (ECM) and osteogenic differentiation. Cell migration in 3D scaffolds was confirmed by confocal microscopy. Calvarial defects in SCID mice were used to determine the bone forming ability of the silk fibroin scaffolds incorporating BMSC expressing BMP7. The results showed that BMSC expressing BMP7 preferred a pore size between 100 and 300 lm in silk fibroin protein fabricated scaffolds, with better cell proliferation and ECM production. Furthermore, in vivo transplantation of the silk fibroin scaffolds combined with BMSC expressing BMP7 induced new bone formation. This study has shown that an optimized pore architecture of silk fibroin scaffolds can modulate the bioactivity of BMP7-transfected BMSC in bone formation.
Resumo:
Scientific discoveries, developments in medicine and health issues are the constant focus of media attention and the principles surrounding the creation of so called ‘saviour siblings’ are of no exception. The development in the field of reproductive techniques has provided the ability to genetically analyse embryos created in the laboratory to enable parents to implant selected embryos to create a tissue-matched child who may be able to cure an existing sick child. The research undertaken in this thesis examines the regulatory frameworks overseeing the delivery of assisted reproductive technologies (ART) in Australia and the United Kingdom and considers how those frameworks impact on the accessibility of in vitro fertilisation (IVF) procedures for the creation of ‘saviour siblings’. In some jurisdictions, the accessibility of such techniques is limited by statutory requirements. The limitations and restrictions imposed by the state in relation to the technology are analysed in order to establish whether such restrictions are justified. The analysis is conducted on the basis of a harm framework. The framework seeks to establish whether those affected by the use of the technology (including the child who will be created) are harmed. In order to undertake such evaluation, the concept of harm is considered under the scope of John Stuart Mill’s liberal theory and the Harm Principle is used as a normative tool to judge whether the level of harm that may result, justifies state intervention or restriction with the reproductive decision-making of parents in this context. The harm analysis conducted in this thesis seeks to determine an appropriate regulatory response in relation to the use of pre-implantation tissue-typing for the creation of ‘saviour siblings’. The proposals outlined in the last part of this thesis seek to address the concern that harm may result from the practice of pre-implantation tissue-typing. The current regulatory frameworks in place are also analysed on the basis of the harm framework established in this thesis. The material referred to in this thesis reflects the law and policy in place in Australia and the UK at the time the thesis was submitted for examination (December 2009).
Resumo:
This work is a digital version of a dissertation that was first submitted in partial fulfillment of the Degree of Doctor of Philosophy at the Queensland University of Technology (QUT) in March 1994. The work was concerned with problems of self-organisation and organisation ranging from local to global levels of hierarchy. It considers organisations as living entities from local to global things that a living entity – more particularly, an individual, a body corporate or a body politic - must know and do to maintain an existence – that is to remain viable – or to be sustainable. The term ‘land management’ as used in 1994 was later subsumed into a more general concept of ‘natural resource management’ and then merged with ideas about sustainable socioeconomic and sustainable ecological development. The cybernetic approach contains many cognitive elements of human observation, language and learning that combine into production processes. The approach tends to highlight instances where systems (or organisations) can fail because they have very little chance of succeeding. Thus there are logical necessities as well as technical possibilities in designing, constructing, operating and maintaining production systems that function reliably over extended periods. Chapter numbers and titles to the original thesis are as follows: 1. Land management as a problem of coping with complexity 2. Background theory in systems theory and cybernetic principles 3. Operationalisation of cybernetic principles in Beer’s Viable System Model 4. Issues in the design of viable cadastral surveying and mapping organisation 5. An analysis of the tendency for fragmentation in surveying and mapping organisation 6. Perambulating the boundaries of Sydney – a problem of social control under poor standards of literacy 7. Cybernetic principles in the process of legislation 8. Closer settlement policy and viability in agricultural production 9. Rate of return in leasing Crown lands
Resumo:
Keyword Spotting is the task of detecting keywords of interest within continu- ous speech. The applications of this technology range from call centre dialogue systems to covert speech surveillance devices. Keyword spotting is particularly well suited to data mining tasks such as real-time keyword monitoring and unre- stricted vocabulary audio document indexing. However, to date, many keyword spotting approaches have su®ered from poor detection rates, high false alarm rates, or slow execution times, thus reducing their commercial viability. This work investigates the application of keyword spotting to data mining tasks. The thesis makes a number of major contributions to the ¯eld of keyword spotting. The ¯rst major contribution is the development of a novel keyword veri¯cation method named Cohort Word Veri¯cation. This method combines high level lin- guistic information with cohort-based veri¯cation techniques to obtain dramatic improvements in veri¯cation performance, in particular for the problematic short duration target word class. The second major contribution is the development of a novel audio document indexing technique named Dynamic Match Lattice Spotting. This technique aug- ments lattice-based audio indexing principles with dynamic sequence matching techniques to provide robustness to erroneous lattice realisations. The resulting algorithm obtains signi¯cant improvement in detection rate over lattice-based audio document indexing while still maintaining extremely fast search speeds. The third major contribution is the study of multiple veri¯er fusion for the task of keyword veri¯cation. The reported experiments demonstrate that substantial improvements in veri¯cation performance can be obtained through the fusion of multiple keyword veri¯ers. The research focuses on combinations of speech background model based veri¯ers and cohort word veri¯ers. The ¯nal major contribution is a comprehensive study of the e®ects of limited training data for keyword spotting. This study is performed with consideration as to how these e®ects impact the immediate development and deployment of speech technologies for non-English languages.
Resumo:
Despite a central role in angiosperm reproduction, few gametophyte-specific genes and promoters have been isolated, particularly for the inaccessible female gametophyte (embryo sac). Using the Ds-based enhancer-detector line ET253, we have cloned an egg apparatus-specific enhancer (EASE) from Arabidopsis (Arabidopsis thaliana). The genomic region flanking the Ds insertion site was further analyzed by examining its capability to control gusA and GFP reporter gene expression in the embryo sac in a transgenic context. Through analysis of a 5' and 3' deletion series in transgenic Arabidopsis, the sequence responsible for egg apparatus-specific expression was delineated to 77 bp. Our data showed that this enhancer is unique in the Arabidopsis genome, is conserved among different accessions, and shows an unusual pattern of sequence variation. This EASE works independently of position and orientation in Arabidopsis but is probably not associated with any nearby gene, suggesting either that it acts over a large distance or that a cryptic element was detected. Embryo-specific ablation in Arabidopsis was achieved by transactivation of a diphtheria toxin gene under the control of the EASE. The potential application of the EASE element and similar control elements as part of an open-source biotechnology toolkit for apomixis is discussed.
Resumo:
Cell sheets can be used to produce neo-tissue with mature extracellular matrix. However, extensive contraction of cell sheets remains a problem. We devised a technique to overcome this problem and applied it to tissue engineer a dermal construct. Human dermal fibroblasts were cultured with poly(lactic-co-glycolic acid)-collagen meshes and collagen-hyaluronic acid foams. Resulting cell sheets were folded over the scaffolds to form dermal constructs. Human keratinocytes were cultured on these dermal constructs to assess their ability to support bilayered skin regeneration. Dermal constructs produced with collagen-hyaluronic acid foams showed minimal contraction, while those with poly(lactic-co-glycolic acid)-collagen meshes curled up. Cell proliferation and metabolic activity profiles were characterized with PicoGreen and AlamarBlue assays, respectively. Fluorescent labeling showed high cell viability and F-actin expression within the constructs. Collagen deposition was detected by immunocytochemistry and electron microscopy. Transforming Growth Factor-alpha and beta1, Keratinocyte Growth Factor and Vascular Endothelial Growth Factor were produced at various stages of culture, measured by RT-PCR and ELISA. These results indicated that assimilating cell sheets with mechanically stable scaffolds could produce viable dermal-like constructs that do not contract. Repeated enzymatic treatment cycles for cell expansion is unnecessary, while the issue of poor cell seeding efficiency in scaffolds is eliminated.
Resumo:
As the acceptance and popularity of wireless networking technologies has proliferated, the security of the IEEE 802.11 wireless local area network (WLAN) has advanced in leaps and bounds. From tenuous beginnings, where the only safe way to deploy a WLAN was to assume it was hostile and employ higherlayer information security controls, to the current state of the art, all manner of improvements have been conceived and many implemented. This work investigates some of the remaining issues surrounding IEEE 802.11 WLAN operation. While the inherent issues in WLAN deployments and the problems of the original Wired Equivalent Privacy (WEP) provisions are well known and widely documented, there still exist a number of unresolved security issues. These include the security of management and control frames and the data link layer protocols themselves. This research introduces a novel proposal to enhance security at the link layer of IEEE 802.11 WLANs and then conducts detailed theoretical and empirical investigation and analysis of the eects of such proposals. This thesis �rst de�nes the state of the art in WLAN technology and deployment, including an overview of the current and emerging standards, the various threats, numerous vulnerabilities and current exploits. The IEEE 802.11i MAC security enhancements are discussed in detail, along with the likely outcomes of the IEEE 802.11 Task Group W1, looking into protected management frames. The problems of the remaining unprotected management frames, the unprotected control frames and the unprotected link layer headers are reviewed and a solution is hypothesised, to encrypt the entire MAC Protocol Data Unit (MPDU), including the MAC headers, not just the MAC Service Data Unit (MSDU) commonly performed by existing protocols. The proposal is not just to encrypt a copy of the headers while still using cleartext addresses to deliver the frame, as used by some existing protocols to support the integrity and authenticity of the headers, but to pass the entire MPDU only as ciphertext to also support the con�dentiality of the frame header information. This necessitates the decryption of every received frame using every available key before a station can determine if it is the intended recipient. As such, this raises serious concerns as to the viability of any such proposal due to the likely impact on throughput and scalability. The bulk of the research investigates the impacts of such proposals on the current WLAN protocols. Some possible variations to the proposal are also provided to enhance both utility and speed. The viability this proposal with respect to the eect on network throughput is then tested using a well known and respected network simulation tool, along with a number of analysis tools developed speci�cally for the data generated here. The simulator's operation is �rst validated against recognised test outputs, before a comprehensive set of control data is established, and then the proposal is tested and and compared against the controls. This detailed analysis of the various simulations should be of bene�t to other researchers who need to validate simulation results. The analysis of these tests indicate areas of immediate improvement and so the protocols are adjusted and a further series of experiments conducted. These �nal results are again analysed in detail and �nal appraisals provided.
Resumo:
The News of the Week article that reports on Senator Kay Bailey Hutchison (R-TX) questioning the need to fund social science research at the National Science Foundation is alarming and shortsighted ("Senate panel chair asks why NSF funds social sciences," 12 May, p. 829). Social science research is at the fundamental core of basic research and has much to contribute to the economic viability of the United States. Twenty years of direct and jointly funded social and ecosystem science research at Colorado State University's Natural Resource Ecology Laboratory has produced deep insights into environmental and societal impacts of political upheaval, land use, and climate change in parts of Africa, Asia, and the Americas. Beyond greatly advancing our understanding of the coupled human-environmental system, the partnership of social and ecosystem science has brought scientists and decision-makers together to begin to develop solutions to difficult problems.
Resumo:
Flinders University and Queensland University of Technology, biofuels research interests cover a broad range of activities. Both institutions are seeking to overcome the twin evils of "peak oil" (Hubbert 1949 & 1956) and "global warming" (IPPC 2007, Stern 2006, Alison 2010), through development of Generation 1, 2 and 3 (Gen-1, 2 & 3) biofuels (Clarke 2008, Clarke 2010). This includes development of parallel Chemical Biorefinery, value-added, co-product chemical technologies, which can underpin the commercial viability of the biofuel industry. Whilst there is a focused effort to develop Gen-2 & 3 biofuels, thus avoiding the socially unacceptable use of food based Gen-1 biofuels, it must also be recognized that as yet, no country in the world has produced sustainable Gen-2 & 3 biofuel on a commercial basis. For example, in 2008 the United States used 38 billion litres (3.5% of total fuel use) of Gen-1 biofuel; in 2009/2010 this will be 47.5 billion litres (4.5% of fuel use) and in 2018 this has been estimated to rise to 96 billion litres (9% of total US fuel use). Brazil in 2008 produced 24.5 billion litres of ethanol, representing 37.3% of the world’s ethanol use for fuel and Europe, in 2008, produced 11.7 billion litres of biofuel (primarily as biodiesel). Compare this to Australia’s miserly biofuel production in 2008/2009 of 180 million litres of ethanol and 75 million litres of biodiesel, which is 0.4% of our fuel consumption! (Clarke, Graiver and Habibie 2010) To assist in the development of better biofuels technologies in the Asian developing regions the Australian Government recently awarded the Materials & BioEnergy Group from Flinders University, in partnership with the Queensland University of Technology, an Australian Leadership Award (ALA) Biofuel Fellowship program to train scientists from Indonesia and India about all facets of advanced biofuel technology.
Resumo:
With increasing pressure to deliver environmentally friendly and socially responsible highway infrastructure projects, stakeholders are also putting significant focus on the early identification of financial viability and outcomes for these projects. Infrastructure development typically requires major capital input, which may cause serious financial constraints for investors. The push for sustainability has added new dimensions to the evaluation of highway projects, particularly on the cost front. Comprehensive analysis of the cost implications of implementing place sustainable measures in highway infrastructure throughout its lifespan is highly desirable and will become an essential part of the highway development process and a primary concern for decision makers. This paper discusses an ongoing research which seeks to identify cost elements and issues related to sustainable measures for highway infrastructure projects. Through life-cycle costing analysis (LCCA), financial implications of pursuing sustainability, which are highly concerned by the construction stakeholders, have been assessed to aid the decision making when contemplating the design, development and operation of highway infrastructure. An extensive literature review and evaluation of project reports from previous Australian highway projects was first conducted to reveal all potential cost elements. This provided the foundation for a questionnaire survey, which helped identify those specific issues and related costs that project stakeholders consider to be most critical in the Australian industry context. Through the survey, three key stakeholders in highway infrastructure development, namely consultants, contractors and government agencies, provided their views on the specific selection and priority ranking of the various categories. Findings of the survey are being integrated into proven LCCA models for further enhancement. A new LCCA model will be developed to assist the stakeholders to evaluate costs and investment decisions and reach optimum balance between financial viability and sustainability deliverables.
Resumo:
The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.