71 resultados para Eletroencefalografia - EEG
Resumo:
The present study used ERPs to compare processing of fear-relevant (FR) animals (snakes and spiders) and non-fear-relevant (NFR) animals similar in appearance (worms and beetles). EEG was recorded from 18 undergraduate participants (10 females) as they completed two animal-viewing tasks that required simple categorization decisions. Participants were divided on a post hoc basis into low snake/spider fear and high snake/spider fear groups. Overall, FR animals were rated higher on fear and elicited a larger LPC. However, individual differences qualified these effects. Participants in the low fear group showed clear differentiation between FR and NFR animals on subjective ratings of fear and LPC modulation. In contrast, participants in the high fear group did not show such differentiation between FR and NFR animals. These findings suggest that the salience of feared-FR animals may generalize on both a behavioural and electro-cortical level to other animals of similar appearance but of a non-harmful nature.
Resumo:
Summary: Objective: We performed spike triggered functional MRI (fMRI) in a 12 year old girl with Benign Epilepsy with Centro-temporal Spikes (BECTS) and left-sided spikes. Our aim was to demonstrate the cerebral origin of her interictal spikes. Methods: EEG was recorded within the 3 Tesla MRI. Whole brain fMRI images were acquired, beginning 2–3 seconds after spikes. Baseline fMRI images were acquired when there were no spikes for 20 seconds. Image sets were compared with the Student's t-test. Results: Ten spike and 20 baseline brain volumes were analysed. Focal activiation was seen in the inferior left sensorimotor cortex near the face area. The anterior cingulate was more active during baseline than spikes. Conclusions: Left sided epileptiform activity in this patient with BECTS is associated with fMRI activation in the left face region of the somatosensory cortex, which would be consistent with the facial sensorimotor involvement in BECT seizures. The presence of BOLD signal change in other regions raises the possibility that the scalp recorded field of this patient with BECTs may reflect electrical change in more than one brain region.
Resumo:
Decline of alertness constitutes a normal physiological phenomenon but could be aggravated when drivers operate in monotonous environments, even in rested individuals. Driving performance is impaired and this increases crash risk due to inattention. This paper aims to show that road characteristics - namely road design (road geometry) and road side variability (signage and buildings) – influence subjective assessment of alertness by drivers. This study used a driving simulator to investigate the drivers’ ability to subjectively detect periods of time when their alertness is importantly reduced by varying road geometry and road environment. Driver’s EEG activity is recorded as a reference to evaluate objectively driver's alertness and is compared to self-reported alertness by participants. Twenty-five participants drove on four different scenarios (varying road design and road environment monotony) for forty minutes. It was observed that participants were significantly more accurate in their assessment before the driving task as compared to after (90% versus 60%). Errors in assessment were largely underestimations of their real alertness rather than over-estimations. The ability to detect low alertness as assessed with an EEG was highly dependent on the road monotony. Scenarios with low roadside variability resulted in high overestimation of the real alertness, which was not observed on monotonous road design. The findings have consequences for road safety and suggest that countermeasures to lapses of alertness cannot rely solely on self-assessment from drivers and road design should reduce environments with low variability.
Resumo:
Background: Sleepiness is a direct contributor to a substantial proportion of fatal and severe road cashes. A number of technological solutions designed to detect sleepiness have been developed, but self-awareness of increasing sleepiness remains a critical component in on-road strategies for mitigating this risk. In order to take appropriate action when sleepy, drivers’ perceptions of their level of sleepiness must be accurate. Aims: This study aimed to assess capacity to accurately identify sleepiness and self-regulate driving cessation during a validated driving simulator task. Participants: Participants comprised 26 young adult drivers (20-28 years). The drivers had open licenses but no other exclusion criteria where used. Methods: Participants woke at 5am, and took part in a laboratory-based hazard perception driving simulation, either at mid-morning or mid-afternoon. Established physiological measures (including EEG) and subjective measures (sleepiness ratings) previously found sensitive to changes in sleepiness levels were utilised. Participants were instructed to ‘drive’ until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 39 minutes (±18 minutes). Almost all (23/26) of the participants then achieved sleep during the nap opportunity. These data suggest that the participants’ perceptions of sleepiness were specific. However, EEG data from a number of participants suggested very high levels of sleepiness prior to driving cessation, suggesting poor sensitivity. Conclusions: Participants reported high levels of sleepiness while driving after very moderate sleep restriction. They were able to identify increasing sleepiness during the test period, could decide to cease driving and in most cases were sufficiently sleepy to achieve sleep during the daytime session. However, the levels of sleepiness achieved prior to driving cessation suggest poor accuracy in self-perception and regulation. This presents practical issues for the implementation of fatigue and sleep-related strategies to improve driver safety.
Resumo:
Introduction: Sleepiness contributes to a substantial proportion of fatal and severe road crashes. Efforts to reduce the incidence of sleep-related crashes have largely focussed on driver education to promote self-regulation of driving behaviour. However, effective self-regulation requires accurate self-perception of sleepiness. The aim of this study was to assess capacity to accurately identify sleepiness, and self-regulate driving cessation, during a validated driving simulator task. Methods: Participants comprised 26 young adult drivers (20-28 years) who had open licenses. No other exclusion criteria where used. Participants were partially sleep deprived (05:00 wake up) and completed a laboratory-based hazard perception driving simulation, counterbalanced to either at mid-morning or mid-afternoon. Established physiological measures (i.e., EEG, EOG) and subjective measures (Karolinska Sleepiness Scale), previously found sensitive to changes in sleepiness levels, were utilised. Participants were instructed to ‘drive’ on the simulator until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 36.1 minutes (±17.7 minutes). Subjective sleepiness increased significantly from the beginning (KSS=6.6±0.7) to the end (KSS=8.2±0.5) of the driving period. No significant differences were found for EEG spectral power measures of sleepiness (i.e., theta or alpha spectral power) from the start of the driving task to the point of cessation of driving. During the nap opportunity, 88% of the participants (23/26) were able to reach sleep onset with an average latency of 9.9 minutes (±7.5 minutes). The average nap duration was 15.1 minutes (±8.1 minutes). Sleep architecture during the nap was predominately comprised of Stages I and II (combined 92%). Discussion: Participants reported high levels of sleepiness during daytime driving after very moderate sleep restriction. They were able to report increasing sleepiness during the test period despite no observed change in standard physiological indices of sleepiness. This increased subjective sleepiness had behavioural validity as the participants had high ‘napability’ at the point of driving cessation, with most achieving some degree of subsequent sleep. This study suggests that the nature of a safety instruction (i.e. how to view sleepiness) can be a determinant of driver behaviour.
Resumo:
This paper reports on the implementation of a non-invasive electroencephalography-based brain-computer interface to control functions of a car in a driving simulator. The system is comprised of a Cleveland Medical Devices BioRadio 150 physiological signal recorder, a MATLAB-based BCI and an OKTAL SCANeR advanced driving experience simulator. The system utilizes steady-state visual-evoked potentials for the BCI paradigm, elicited by frequency-modulated high-power LEDs and recorded with the electrode placement of Oz-Fz with Fz as ground. A three-class online brain-computer interface was developed and interfaced with an advanced driving simulator to control functions of the car, including acceleration and steering. The findings are mainly exploratory but provide an indication of the feasibility and challenges of brain-controlled on-road cars for the future, in addition to a safe, simulated BCI driving environment to use as a foundation for research into overcoming these challenges.
Resumo:
Objectives To examine the effects on monotonous driving of normal sleep versus one night of sleep restriction in continuous positive airway pressure (CPAP) treated obstructive sleep apnoea (OSA) patients compared with age matched healthy controls. Methods Nineteen CPAP treated compliant male OSA patients (OSA-treated patients (OPs)), aged 50–75 years, and 20 healthy age-matched controls underwent both a normal night’s sleep and sleep restriction to 5 h (OPs remained on CPAP) in a counterbalanced design. All participants completed a 2 h afternoon monotonous drive in a realistic car simulator. Driving was monitored for sleepiness-related minor and major lane deviations, with ‘safe’ driving time being total time driven prior to first major lane deviation. EEGs were recorded continuously, and subjective sleepiness ratings were taken at regular intervals throughout the drive. Results After a normal night’s sleep, OPs and controls did not differ in terms of driving performance or in their ability to assess the levels of their own sleepiness, with both groups driving ‘safely’ for approximately 90 min. However, after sleep restriction, OPs had a significantly shorter (65 min) safe driving time and had to apply more compensatory effort to maintain their alertness compared with controls. They also underestimated the enhanced sleepiness. Nevertheless, apart from this caveat, there were generally close associations between subjective sleepiness, likelihood of a major lane deviation and EEG changes indicative of sleepiness. Conclusions With a normal night’s sleep, effectively treated older men with OSA drive as safely as healthy men of the same age. However, after restricted sleep, driving impairment is worse than that of controls. This suggests that, although successful CPAP treatment can alleviate potential detrimental effects of OSA on monotonous driving following normal sleep, these patients remain more vulnerable to sleep restriction.
Resumo:
Young men figure prominently in sleep-related road crashes. Non-driving studies show them to be particularly vulnerable to sleep loss, compared with older men. We assessed the effect of a normal night's sleep vs. prior sleep restricted to 5 h, in a counterbalanced design, on prolonged (2 h) afternoon simulated driving in 20 younger (av. 23 y) and 19 older (av. 67 y) healthy men. Driving was monitored for sleepiness related lane deviations, EEGs were recorded continuously and subjective ratings of sleepiness taken every 200 s. Following normal sleep there were no differences between groups for any measure. After sleep restriction younger drivers showed significantly more sleepiness-related deviations and greater 4–11 Hz EEG power, indicative of sleepiness. There was a near significant increase in subjective sleepiness. Correlations between the EEG and subjective measures were highly significant for both groups, indicating good self-insight into increasing sleepiness. We confirm the greater vulnerability of younger drivers to sleep loss under prolonged afternoon driving.
Resumo:
Purpose Obstructive sleep apnoea (OSA) patients effectively treated by and compliant with continuous positive air pressure (CPAP) occasionally miss a night’s treatment. The purpose of this study was to use a real car interactive driving simulator to assess the effects of such an occurrence on the next day’s driving, including the extent to which these drivers are aware of increased sleepiness. Methods Eleven long-term compliant CPAP-treated 50–75-year-old male OSA participants completed a 2-h afternoon, simulated, realistic monotonous drive in an instrumented car, twice, following one night: (1) normal sleep with CPAP and (2) nil CPAP. Drifting out of road lane (‘incidents’), subjective sleepiness every 200 s and continuous electroencephalogram (EEG) activities indicative of sleepiness and compensatory effort were monitored. Results Withdrawal of CPAP markedly increased sleep disturbance and led to significantly more incidents, a shorter ‘safe’ driving duration, increased alpha and theta EEG power and greater subjective sleepiness. However, increased EEG beta activity indicated that more compensatory effort was being applied. Importantly, under both conditions, there was a highly significant correlation between subjective and EEG measures of sleepiness, to the extent that participants were well aware of the effects of nil CPAP. Conclusions Patients should be aware that compliance with treatment every night is crucial for safe driving.
Resumo:
Oscillatory entrainment to the speech signal is important for language processing, but has not yet been studied in developmental disorders of language. Developmental dyslexia, a difficulty in acquiring efficient reading skills linked to difficulties with phonology (the sound structure of language), has been associated with behavioural entrainment deficits. It has been proposed that the phonological ‘deficit’ that characterises dyslexia across languages is related to impaired auditory entrainment to speech at lower frequencies via neuroelectric oscillations (<10 Hz, ‘temporal sampling theory’). Impaired entrainment to temporal modulations at lower frequencies would affect the recovery of the prosodic and syllabic structure of speech. Here we investigated event-related oscillatory EEG activity and contingent negative variation (CNV) to auditory rhythmic tone streams delivered at frequencies within the delta band (2 Hz, 1.5 Hz), relevant to sampling stressed syllables in speech. Given prior behavioural entrainment findings at these rates, we predicted functionally atypical entrainment of delta oscillations in dyslexia. Participants performed a rhythmic expectancy task, detecting occasional white noise targets interspersed with tones occurring regularly at rates of 2 Hz or 1.5 Hz. Both groups showed significant entrainment of delta oscillations to the rhythmic stimulus stream, however the strength of inter-trial delta phase coherence (ITC, ‘phase locking’) and the CNV were both significantly weaker in dyslexics, suggestive of weaker entrainment and less preparatory brain activity. Both ITC strength and CNV amplitude were significantly related to individual differences in language processing and reading. Additionally, the instantaneous phase of prestimulus delta oscillation predicted behavioural responding (response time) for control participants only.
Resumo:
The reversible posterior leukoencephalopathy syndrome (RPLES) is a condition characterised by reversible neurological and radiological findings that has been associated with use of immunosuppressive, chemotherapeutic and more recently novel targeted therapies. We describe the case of a 50-year-old woman with advanced non-small cell lung cancer who developed status epilepticus shortly after receiving cisplatin and gemcitabine chemotherapy. The clinical, radiological and EEG findings during and post event are presented and are in keeping with a diagnosis of RPLES. Early recognition of this rare syndrome, supportive management and withdrawal of the offending agent appear to result in a reversal of the manifestations described. © 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Introduction Sleep restriction and missing 1 night’s continuous positive air pressure (CPAP) treatment are scenarios faced by obstructive sleep apnoea (OSA) patients, who must then assess their own fitness to drive. This study aims to assess the impact of this on driving performance. Method 11 CPAP treated participants (50–75 yrs), drove an interactive car simulator under monotonous motorway conditions for 2 hours on 3 afternoons, following;(i)normal night’s sleep (average 8.2 h) with CPAP (ii) sleep restriction (5 h), with CPAP (iii)normal length of sleep, without CPAP. Driving incidents were noted if the car came out of the designated driving lane. EEG was recorded continually and KSS reported every 200 seconds. Results Driving incidents: Incidents were more prevalent following CPAP withdrawal during hour 1, demonstrating a significant condition time interaction [F(6,60) = 3.40, p = 0.006]. KSS: At the start of driving participants felt sleepiest following CPAP withdrawal, by the end of the task KSS levels were similar following CPAP withdrawal and sleep restriction, demonstrating a significant condition, time interaction [F(3.94,39.41) = 3.39, p = 0.018]. EEG: There was a non significant trend for combined alpha and theta activity to be highest throughout the drive following CPAP withdrawal. Discussion CPAP withdrawal impairs driving simulator performance sooner than restricting sleep to 5 h with CPAP. Participants had insight into this increased sleepiness reflected by the higher KSS reported following CPAP withdrawal. In the practical terms of driving any one incident could be fatal. The earlier impairment reported here demonstrates the potential danger of missing CPAP treatment and highlights the benefit of CPAP treatment even when sleep time is short.
Resumo:
The Brain Research Institute (BRI) uses various types of indirect measurements, including EEG and fMRI, to understand and assess brain activity and function. As well as the recovery of generic information about brain function, research also focuses on the utilisation of such data and understanding to study the initiation, dynamics, spread and suppression of epileptic seizures. To assist with the future focussing of this aspect of their research, the BRI asked the MISG 2010 participants to examine how the available EEG and fMRI data and current knowledge about epilepsy should be analysed and interpreted to yield an enhanced understanding about brain activity occurring before, at commencement of, during, and after a seizure. Though the deliberations of the study group were wide ranging in terms of the related matters considered and discussed, considerable progress was made with the following three aspects. (1) The science behind brain activity investigations depends crucially on the quality of the analysis and interpretation of, as well as the recovery of information from, EEG and fMRI measurements. A number of specific methodologies were discussed and formalised, including independent component analysis, principal component analysis, profile monitoring and change point analysis (hidden Markov modelling, time series analysis, discontinuity identification). (2) Even though EEG measurements accurately and very sensitively record the onset of an epileptic event or seizure, they are, from the perspective of understanding the internal initiation and localisation, of limited utility. They only record neuronal activity in the cortical (surface layer) neurons of the brain, which is a direct reflection of the type of electrical activity they have been designed to record. Because fMRI records, through the monitoring of blood flow activity, the location of localised brain activity within the brain, the possibility of combining fMRI measurements with EEG, as a joint inversion activity, was discussed and examined in detail. (3) A major goal for the BRI is to improve understanding about ``when'' (at what time) an epileptic seizure actually commenced before it is identified on an eeg recording, ``where'' the source of this initiation is located in the brain, and ``what'' is the initiator. Because of the general agreement in the literature that, in one way or another, epileptic events and seizures represent abnormal synchronisations of localised and/or global brain activity the modelling of synchronisations was examined in some detail. References C. M. Michel, G. Thut, S. Morand, A. Khateb, A. J. Pegna, R. Grave de Peralta, S. Gonzalez, M. Seeck and T. Landis, Electric source imaging of human brain functions, Brain Res. Rev. , 36 (2--3), 2001, 108--118. doi:10.1016/S0165-0173(01)00086-8 S. Ogawa, R. S. Menon, S. G. Kim and K. Ugurbil, On the characteristics of functional magnetic resonance imaging of the brain, Annu. Rev. Bioph. Biom. , 27 , 1998, 447--474. doi:10.1146/annurev.biophys.27.1.447 C. D. Binnie and H. Stefan, Modern electroencephalography: its role in epilepsy management, Clin. Neurophysiol. , 110 (10), 1999, 1671--1697. doi:10.1016/S1388-2457(99)00125-X J. X. Tao, A. Ray, S. Hawes-Ebersole and J. S. Ebersole, Intracranial eeg substrates of scalp eeg interictal spikes, Epilepsia , 46 (5), 2005, 669--76. doi:10.1111/j.1528-1167.2005.11404.x S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle and K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging, P. Natl. Acad. Sci. USA , 89 (13), 1992, 5951--5955. doi:10.1073/pnas.89.13.5951 J. Engel Jr., Report of the ilae classification core group, Epilepsia , 47 (9), 2006, 1558--1568. doi:10.1111/j.1528-1167.2006.00215.x L. Lemieux, A. Salek-Haddadi, O. Josephs, P. Allen, N. Toms, C. Scott, K. Krakow, R. Turner and D. R. Fish, Event-related fmri with simultaneous and continuous eeg: description of the method and initial case r port, NeuroImage , 14 (3), 2001, 780--7. doi:10.1006/nimg.2001.0853 P. Federico, D. F. Abbott, R. S. Briellmann, A. S. Harvey and G. D. Jackson, Functional mri of the pre-ictal state, Brain , 128 (8), 2005, 1811-7. doi:10.1093/brain/awh533 C. S. Hawco, A. P. Bagshaw, Y. Lu, F. Dubeau and J. Gotman, bold changes occur prior to epileptic spikes seen on scalp eeg, NeuroImage , 35 (4), 2007, 1450--1458. doi:10.1016/j.neuroimage.2006.12.042 F. Moeller, H. R. Siebner, S. Wolff, H. Muhle, R. Boor, O. Granert, O. Jansen, U. Stephani and M. Siniatchkin, Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges, NeuroImage , 39 (4), 2008, 1839--1849. doi:10.1016/j.neuroimage.2007.10.058 V. Osharina, E. Ponchel, A. Aarabi, R. Grebe and F. Wallois, Local haemodynamic changes preceding interictal spikes: A simultaneous electrocorticography (ecog) and near-infrared spectroscopy (nirs) analysis in rats, NeuroImage , 50 (2), 2010, 600--607. doi:10.1016/j.neuroimage.2010.01.009 R. S. Fisher, W. Boas, W. Blume, C. Elger, P. Genton, P. Lee and J. Engel, Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe), Epilepsia , 46 (4), 2005, 470--472. doi:10.1111/j.0013-9580.2005.66104.x H. Berger, Electroencephalogram in humans, Arch. Psychiat. Nerven. , 87 , 1929, 527--570. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli and R. G. de Peralta, eeg source imaging, Clin. Neurophysiol. , 115 (10), 2004, 2195--2222. doi:10.1016/j.clinph.2004.06.001 P. L. Nunez and R. B. Silberstein, On the relationship of synaptic activity to macroscopic measurements: Does co-registration of eeg with fmri make sense?, Brain Topogr. , 13 (2), 2000, 79--96. doi:10.1023/A:1026683200895 S. Ogawa, T. M. Lee, A. R. Kay and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, P. Natl. Acad. Sci. USA , 87 (24), 1990, 9868--9872. doi:10.1073/pnas.87.24.9868 J. S. Gati, R. S. Menon, K. Ugurbil and B. K. Rutt, Experimental determination of the bold field strength dependence in vessels and tissue, Magn. Reson. Med. , 38 (2), 1997, 296--302. doi:10.1002/mrm.1910380220 P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky and J. S. Hyde, Time course EPI of human brain function during task activation, Magn. Reson. Med. , 25 (2), 1992, 390--397. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppelm, M. S. Cohen and R. Turner, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, P. Natl. Acad. Sci. USA , 89 (12), 1992, 5675--5679. doi:10.1073/pnas.89.12.5675 J. Frahm, K. D. Merboldt and W. Hnicke, Functional mri of human brain activation at high spatial resolution, Magn. Reson. Med. , 29 (1), 1993, 139--144. P. A. Bandettini, A. Jesmanowicz, E. C. Wong and J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med. , 30 (2), 1993, 161--173. K. J. Friston, P. Jezzard and R. Turner, Analysis of functional MRI time-series, Hum. Brain Mapp. , 1 (2), 1994, 153--171. B. Biswal, F. Z. Yetkin, V. M. Haughton and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar mri, Mag. Reson. Med. , 34 (4), 1995, 537--541. doi:10.1002/mrm.1910340409 K. J. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather and R. S. J. Frackowiak, Spatial registration and normalization of images, Hum. Brain Mapp. , 3 (3), 1995, 165--189. K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak and R. Turner, Movement-related effects in fmri time-series, Magn. Reson. Med. , 35 (3), 1996, 346--355. G. H. Glover, T. Q. Li and D. Ress, Image-based method for retrospective correction of physiological motion effects in fmri: Retroicor, Magn. Reson. Med. , 44 (1), 2000, 162--167. doi:10.1002/1522-2594(200007)44:13.0.CO;2-E K. J. Friston, O. Josephs, G. Rees and R. Turner, Nonlinear event-related responses in fmri, Magn. Reson. Med. , 39 (1), 1998, 41--52. doi:10.1002/mrm.1910390109 K. Ugurbil, L. Toth and D. Kim, How accurate is magnetic resonance imaging of brain function?, Trends Neurosci. , 26 (2), 2003, 108--114. doi:10.1016/S0166-2236(02)00039-5 D. S. Kim, I. Ronen, C. Olman, S. G. Kim, K. Ugurbil and L. J. Toth, Spatial relationship between neuronal activity and bold functional mri, NeuroImage , 21 (3), 2004, 876--885. doi:10.1016/j.neuroimage.2003.10.018 A. Connelly, G. D. Jackson, R. S. Frackowiak, J. W. Belliveau, F. Vargha-Khadem and D. G. Gadian, Functional mapping of activated human primary cortex with a clinical mr imaging system, Radiology , 188 (1), 1993, 125--130. L. Allison, Hidden Markov Models, Technical Report , School of Computer and Software Engineering, Monash University, 2000. R. J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and Control, Appl. Math.-Czech. , 2004. B. Bhavnagri, Discontinuities of plane functions projected from a surface with methods for finding these , Technical Report, 2009. B. Bhavnagri, Computer Vision using Shape Spaces , Technical Report,1996, University of Adelaide. B. Bhavnagri, A method for representing shape based on an equivalence relation on polygons, Pattern Recogn. , 27 (2), 1994, 247--260. doi:10.1016/0031-3203(94)90057-4 D. F. Abbott, A. B. Waites, A. S. Harvey and G. D. Jackson, Exploring epileptic seizure onset with fmri, NeuroImage , 36(S1) (344TH-PM), 2007. M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science , 197 , 1977, 287--289. S. H. Strogatz, SYNC - The Emerging Science of Spontaneous Order , Theia, New York, 2003. J. W. Kim, J. A. Roberts and P. A. Robinson, Dynamics of epileptic seizures: Evolution, spreading, and suppression, J. Theor. Biol. , 257 (4), 2009, 527--532. doi:10.1016/j.jtbi.2008.12.009 Y. Kuramoto, T. Aoyagi, I. Nishikawa, T. Chawanya T and K. Okuda, Neural network model carrying phase information with application to collective dynamics, J. Theor. Phys. , 87 (5), 1992, 1119--1126. V. B. Mountcastle, The columnar organization of the neocortex, Brain , 120 (4), 1997, 701. doi:10.1093/brain/120.4.701 F. L. Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity, Epilepsia , 44 (12), 2003, 72--83. F. H. Lopes da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Dynamical diseases of brain systems: different routes to epileptic seizures, ieee T. Bio-Med. Eng. , 50 (5), 2003, 540. L.D. Iasemidis, Epileptic seizure prediction and control, ieee T. Bio-Med. Eng. , 50 (5), 2003, 549--558. L. D. Iasemidis, D. S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis, Adaptive epileptic seizure prediction system, ieee T. Bio-Med. Eng. , 50 (5), 2003, 616--627. K. Lehnertz, F. Mormann, T. Kreuz, R.G. Andrzejak, C. Rieke, P. David and C. E. Elger, Seizure prediction by nonlinear eeg analysis, ieee Eng. Med. Biol. , 22 (1), 2003, 57--63. doi:10.1109/MEMB.2003.1191451 K. Lehnertz, R. G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, G. Widman and C. E. Elger, Nonlinear eeg analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention, J. Clin. Neurophysiol. , 18 (3), 2001, 209. B. Litt and K. Lehnertz, Seizure prediction and the preseizure period, Curr. Opin. Neurol. , 15 (2), 2002, 173. doi:10.1097/00019052-200204000-00008 B. Litt and J. Echauz, Prediction of epileptic seizures, Lancet Neurol. , 1 (1), 2002, 22--30. doi:10.1016/S1474-4422(02)00003-0 M. M{a}kiranta, J. Ruohonen, K Suominen, J. Niinim{a}ki, E. Sonkaj{a}rvi, V. Kiviniemi, T. Sepp{a}nen, S. Alahuhta, V. J{a}ntti and O. Tervonen, {bold} signal increase preceeds eeg spike activity--a dynamic penicillin induced focal epilepsy in deep anesthesia, NeuroImage , 27 (4), 2005, 715--724. doi:10.1016/j.neuroimage.2005.05.025 K. Lehnertz, F. Mormann, H. Osterhage, A. M{u}ller, J. Prusseit, A. Chernihovskyi, M. Staniek, D. Krug, S. Bialonski and C. E. Elger, State-of-the-art of seizure prediction, J. Clin. Neurophysiol. , 24 (2), 2007, 147. doi:10.1097/WNP.0b013e3180336f16 F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. Elger and K. Lehnertz, On the predictability of epileptic seizures, Clin. Neurophysiol. , 116 (3), 2005, 569--587. doi:10.1016/j.clinph.2004.08.025 F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain , 130 (2), 2007, 314--333. doi:10.1093/brain/awl241 Z. Rogowski, I. Gath and E. Bental, On the prediction of epileptic seizures, Biol. Cybern. , 42 (1), 1981, 9--15. Y. Salant, I. Gath, O. Henriksen, Prediction of epileptic seizures from two-channel eeg, Med. Biol. Eng. Comput. , 36 (5), 1998, 549--556. doi:10.1007/BF02524422 J. Gotman and D.J. Koffler, Interictal spiking increases after seizures but does not after decrease in medication, Evoked Potential , 72 (1), 1989, 7--15. J. Gotman and M. G. Marciani, Electroencephalographic spiking activity, drug levels, and seizure occurence in epileptic patients, Ann. Neurol. , 17 (6), 1985, 59--603. A. Katz, D. A. Marks, G. McCarthy and S. S. Spencer, Does interictal spiking change prior to seizures?, Electroen. Clin. Neuro. , 79 (2), 1991, 153--156. A. Granada, R. M. Hennig, B. Ronacher, A. Kramer and H. Herzel, Phase Response Curves: Elucidating the dynamics of couples oscillators, Method Enzymol. , 454 (A), 2009, 1--27. doi:10.1016/S0076-6879(08)03801-9 doi:10.1016/S0076-6879(08)03801-9 H. Kantz and T. Schreiber, Nonlinear time series analysis , 2004, Cambridge Univ Press. M. V. L. Bennett and R. S Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron , 41 (4), 2004, 495 --511. doi:10.1016/S0896-6273(04)00043-1 L.D. Iasemidis, J. Chris Sackellares, H. P. Zaveri and W. J. Williams, Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures, Brain Topogr. , 2 (3), 1990, 187--201. doi:10.1007/BF01140588 M. Le Van Quyen, J. Martinerie, V. Navarro, M. Baulac and F. J. Varela, Characterizing neurodynamic changes before seizures, J. Clin. Neurophysiol. , 18 (3), 2001, 191. J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. Clemenceau, B. Renault and F. J. Varela, Epileptic seizures can be anticipated by non-linear analysis, Nat. Med. , 4 (10), 1998, 1173--1176. doi:10.1038/2667 A. Pikovsky, M. Rosenblum, J. Kurths and R. C. Hilborn, Synchronization: A universal concept in nonlinear science, Amer. J. Phys. , 70 , 2002, 655. H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. , 12 (1), 1972, 1--24. D. Cumin and C. P. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain, Physica D , 226 (2), 2007, 181--196. doi:10.1016/j.physd.2006.12.004 F. K. Skinner, H. Bazzazi and S. A. Campbell, Two-cell to N-cell heterogeneous, inhibitory networks: Precise linking of multistable and coherent properties, J. Comput. Neurosci. , 18 (3), 2005, 343--352. doi:10.1007/s10827-005-0331-1 W. W. Lytton, Computer modelling of epilepsy, Nat. Rev. Neurosci. , 9 (8), 2008, 626--637. doi:10.1038/nrn2416 R. D. Traub, A. Bibbig, F. E. N. LeBeau, E. H. Buhl and M. A. Whittington, Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro, Ann. Rev. , 2004. R. D. Traub, A. Draguhn, M. A. Whittington, T. Baldeweg, A. Bibbig, E. H. Buhl and D. Schmitz, Axonal gap junc ions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis., Rev. Neuroscience , 13 (1), 2002, 1. doi:10.1146/annurev.neuro.27.070203.144303 M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk and G. Sugihara, Early-warning signals for critical transitions, Nature , 461 (7260), 2009, 53--59. doi:10.1038/nature08227 K. Murphy, A Brief Introduction to Graphical Models and Bayesian Networks , 2008, http://www.cs.ubc.ca/murphyk/Bayes/bnintro.html . R. C. Bradley, An elementary
Resumo:
The purpose of this study was to compare the effects of two commonly utilised sleepiness countermeasures: a nap break and an active rest break. The effects of the countermeasures were evaluated by physiological (EEG), subjective, and driving performance measures. Participants completed two hours of simulated driving, followed by a 15 minute nap break or a 15 minute active rest break then completed the final hour of simulated driving. The nap break reduced EEG and subjective sleepiness. The active rest break did not reduce EEG sleepiness, with sleepiness levels eventually increasing, and resulted in an immediate reduction of subjective sleepiness. No difference was found between the two breaks for the driving performance measure. The immediate reduction of subjective sleepiness after the active rest break could leave drivers with erroneous perceptions of their sleepiness, particularly with increases of physiological sleepiness after the break.
Resumo:
Objectives The purpose for this study was to determine the relative benefit of nap and active rest breaks for reducing driver sleepiness. Methods Participants were 20 healthy young adults (20-25 years), including 8 males and 12 females. A counterbalanced within-subjects design was used such that each participant completed both conditions on separate occasions, a week apart. The effects of the countermeasures were evaluated by established physiological (EEG theta and alpha absolute power), subjective (Karolinska Sleepiness Scale), and driving performance measures (Hazard Perception Task). Participants woke at 5am, and undertook a simulated driving task for two hours; each participant then had either a 15-minute nap opportunity or a 15-minute active rest break that included 10 minutes of brisk walking, followed by another hour of simulated driving. Results The nap break reduced EEG theta and alpha absolute power and eventually reduced subjective sleepiness levels. In contrast, the active rest break did not reduce EEG theta and alpha absolute power levels with the power levels eventually increasing. An immediate reduction of subjective sleepiness was observed, with subjective sleepiness increasing during the final hour of simulated driving. No difference was found between the two breaks for hazard perception performance. Conclusions Only the nap break produced a significant reduction in physiological sleepiness. The immediate reductions of subjective sleepiness following the active rest break could leave drivers with erroneous perceptions of their sleepiness, particularly as physiological sleepiness continued to increase after the break.