48 resultados para Educação não Formal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supervisory Control and Data Acquisition (SCADA) systems are one of the key foundations of smart grids. The Distributed Network Protocol version 3 (DNP3) is a standard SCADA protocol designed to facilitate communications in substations and smart grid nodes. The protocol is embedded with a security mechanism called Secure Authentication (DNP3-SA). This mechanism ensures that end-to-end communication security is provided in substations. This paper presents a formal model for the behavioural analysis of DNP3-SA using Coloured Petri Nets (CPN). Our DNP3-SA CPN model is capable of testing and verifying various attack scenarios: modification, replay and spoofing, combined complex attack and mitigation strategies. Using the model has revealed a previously unidentified flaw in the DNP3-SA protocol that can be exploited by an attacker that has access to the network interconnecting DNP3 devices. An attacker can launch a successful attack on an outstation without possessing the pre-shared keys by replaying a previously authenticated command with arbitrary parameters. We propose an update to the DNP3-SA protocol that removes the flaw and prevents such attacks. The update is validated and verified using our CPN model proving the effectiveness of the model and importance of the formal protocol analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research we modelled computer network devices to ensure their communication behaviours meet various network standards. By modelling devices as finite-state machines and examining their properties in a range of configurations, we discovered a flaw in a common network protocol and produced a technique to improve organisations' network security against data theft.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis evaluates the security of Supervisory Control and Data Acquisition (SCADA) systems, which are one of the key foundations of many critical infrastructures. Specifically, it examines one of the standardised SCADA protocols called the Distributed Network Protocol Version 3, which attempts to provide a security mechanism to ensure that messages transmitted between devices, are adequately secured from rogue applications. To achieve this, the thesis applies formal methods from theoretical computer science to formally analyse the correctness of the protocol.