77 resultados para Eddy Viscosity
Resumo:
Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.
Resumo:
Physical and chemical properties of biofuel are influenced by structural features of fatty acid such as chain length, degree of unsaturation and branching of the chain. A simple and reliable calculation method to estimate fuel property is therefore needed to avoid experimental testing which is difficult, costly and time consuming. Typically in commercial biodiesel production such testing is done for every batch of fuel produced. In this study 9 different algae species were selected that were likely to be suitable for subtropical climates. The fatty acid methyl esters (FAMEs) of all algae species were analysed and the fuel properties like cetane number (CN), cold filter plugging point (CFPP), kinematic viscosity (KV), density and higher heating value (HHV) were determined. The relation of each fatty acid with particular fuel property is analysed using multivariate and multi-criteria decision method (MCDM) software. They showed that some fatty acids have major influences on the fuel properties whereas others have minimal influence. Based on the fuel properties and amounts of lipid content rank order is drawn by PROMETHEE-GAIA which helped to select the best algae species for biodiesel production in subtropical climates. Three species had fatty acid profiles that gave the best fuel properties although only one of these (Nannochloropsis oculata) is considered the best choice because of its higher lipid content.
Resumo:
Current older adult capability data-sets fail to account for the effects of everyday environmental conditions on capability. This article details a study that investigates the effects of everyday ambient illumination conditions (overcast, 6000 lx; in-house lighting, 150 lx and street lighting, 7.5 lx) and contrast (90%, 70%, 50% and 30%) on the near visual acuity (VA) of older adults (n= 38, 65-87 years). VA was measured at a 1-m viewing distance using logarithm of minimum angle of resolution (LogMAR) acuity charts. Results from the study showed that for all contrast levels tested, VA decreased by 0.2 log units between the overcast and street lighting conditions. On average, in overcast conditions, participants could detect detail around 1.6 times smaller on the LogMAR charts compared with street lighting. VA also significantly decreased when contrast was reduced from 70% to 50%, and from 50% to 30% in each of the ambient illumination conditions. Practitioner summary: This article presents an experimental study that investigates the impact of everyday ambient illumination levels and contrast on older adults' VA. Results show that both factors have a significant effect on their VA. Findings suggest that environmental conditions need to be accounted for in older adult capability data-sets/designs.
Resumo:
The deformation of rocks is commonly intimately associated with metamorphic reactions. This paper is a step towards understanding the behaviour of fully coupled, deforming, chemically reacting systems by considering a simple example of the problem comprising a single layer system with elastic-power law viscous constitutive behaviour where the deformation is controlled by the diffusion of a single chemical component that is produced during a metamorphic reaction. Analysis of the problem using the principles of non-equilibrium thermodynamics allows the energy dissipated by the chemical reaction-diffusion processes to be coupled with the energy dissipated during deformation of the layers. This leads to strain-rate softening behaviour and the resultant development of localised deformation which in turn nucleates buckles in the layer. All such diffusion processes, in leading to Herring-Nabarro, Coble or “pressure solution” behaviour, are capable of producing mechanical weakening through the development of a “chemical viscosity”, with the potential for instability in the deformation. For geologically realistic strain rates these chemical feed-back instabilities occur at the centimetre to micron scales, and so produce structures at these scales, as opposed to thermal feed-back instabilities that become important at the 100–1000 m scales.
Resumo:
In Social Science (Organization Studies, Economics, Management Science, Strategy, International Relations, Political Science…) the quest for addressing the question “what is a good practitioner?” has been around for centuries, with the underlying assumptions that good practitioners should lead organizations to higher levels of performance. Hence to ask “what is a good “captain”?” is not a new question, we should add! (e.g. Tsoukas & Cummings, 1997, p. 670; Söderlund, 2004, p. 190). This interrogation leads to consider problems such as the relations between dichotomies Theory and Practice, rigor and relevance of research, ways of knowing and knowledge forms. On the one hand we face the “Enlightenment” assumptions underlying modern positivist Social science, grounded in “unity-of-science dream of transforming and reducing all kinds of knowledge to one basic form and level” and cause-effects relationships (Eikeland, 2012, p. 20), and on the other, the postmodern interpretivist proposal, and its “tendency to make all kinds of knowing equivalent” (Eikeland, 2012, p. 20). In the project management space, this aims at addressing one of the fundamental problems in the field: projects still do not deliver their expected benefits and promises and therefore the socio-economical good (Hodgson & Cicmil, 2007; Bredillet, 2010, Lalonde et al., 2012). The Cartesian tradition supporting projects research and practice for the last 60 years (Bredillet, 2010, p. 4) has led to the lack of relevance to practice of the current conceptual base of project management, despite the sum of research, development of standards, best & good practices and the related development of project management bodies of knowledge (Packendorff, 1995, p. 319-323; Cicmil & Hodgson, 2006, p. 2–6, Hodgson & Cicmil, 2007, p. 436–7; Winter et al., 2006, p. 638). Referring to both Hodgson (2002) and Giddens (1993), we could say that “those who expect a “social-scientific Newton” to revolutionize this young field “are not only waiting for a train that will not arrive, but are in the wrong station altogether” (Hodgson, 2002, p. 809; Giddens, 1993, p. 18). While, in the postmodern stream mainly rooted in the “practice turn” (e.g. Hällgren & Lindahl, 2012), the shift from methodological individualism to social viscosity and the advocated pluralism lead to reinforce the “functional stupidity” (Alvesson & Spicer, 2012, p. 1194) this postmodern stream aims at overcoming. We suggest here that addressing the question “what is a good PM?” requires a philosophy of practice perspective to complement the “usual” philosophy of science perspective. The questioning of the modern Cartesian tradition mirrors a similar one made within Social science (Say, 1964; Koontz, 1961, 1980; Menger, 1985; Warry, 1992; Rothbard, 1997a; Tsoukas & Cummings, 1997; Flyvbjerg, 2001; Boisot & McKelvey, 2010), calling for new thinking. In order to get outside the rationalist ‘box’, Toulmin (1990, p. 11), along with Tsoukas & Cummings (1997, p. 655), suggests a possible path, summarizing the thoughts of many authors: “It can cling to the discredited research program of the purely theoretical (i.e. “modern”) philosophy, which will end up by driving it out of business: it can look for new and less exclusively theoretical ways of working, and develop the methods needed for a more practical (“post-modern”) agenda; or it can return to its pre-17th century traditions, and try to recover the lost (“pre-modern”) topics that were side-tracked by Descartes, but can be usefully taken up for the future” (Toulmin, 1990, p. 11). Thus, paradoxically and interestingly, in their quest for the so-called post-modernism, many authors build on “pre-modern” philosophies such as the Aristotelian one (e.g. MacIntyre, 1985, 2007; Tsoukas & Cummings, 1997; Flyvbjerg, 2001; Blomquist et al., 2010; Lalonde et al., 2012). It is perhaps because the post-modern stream emphasizes a dialogic process restricted to reliance on voice and textual representation, it limits the meaning of communicative praxis, and weaking the practice because it turns away attention from more fundamental issues associated with problem-definition and knowledge-for-use in action (Tedlock, 1983, p. 332–4; Schrag, 1986, p. 30, 46–7; Warry, 1992, p. 157). Eikeland suggests that the Aristotelian “gnoseology allows for reconsidering and reintegrating ways of knowing: traditional, practical, tacit, emotional, experiential, intuitive, etc., marginalised and considered insufficient by modernist [and post-modernist] thinking” (Eikeland, 2012, p. 20—21). By contrast with the modernist one-dimensional thinking and relativist and pluralistic post-modernism, we suggest, in a turn to an Aristotelian pre-modern lens, to re-conceptualise (“re” involving here a “re”-turn to pre-modern thinking) the “do” and to shift the perspective from what a good PM is (philosophy of science lens) to what a good PM does (philosophy of practice lens) (Aristotle, 1926a). As Tsoukas & Cummings put it: “In the Aristotelian tradition to call something good is to make a factual statement. To ask, for example, ’what is a good captain’?’ is not to come up with a list of attributes that good captains share (as modem contingency theorists would have it), but to point out the things that those who are recognized as good captains do.” (Tsoukas & Cummings, 1997, p. 670) Thus, this conversation offers a dialogue and deliberation about a central question: What does a good project manager do? The conversation is organized around a critic of the underlying assumptions supporting the modern, post-modern and pre-modern relations to ways of knowing, forms of knowledge and “practice”.
Resumo:
Gelatin-methacrylamide (gelMA) hydrogels are shown to support chondrocyte viability and differentiation and give wide ranging mechanical properties depending on several cross-linking parameters. Polymer concentration, UV exposure time, and thermal gelation prior to UV exposure allow for control over hydrogel stiffness and swelling properties. GelMA solutions have a low viscosity at 37 °C, which is incompatible with most biofabrication approaches. However, incorporation of hyaluronic acid (HA) and/or co-deposition with thermoplastics allows gelMA to be used in biofabrication processes. These attributes may allow engineered constructs to match the natural functional variations in cartilage mechanical and geometrical properties.
Resumo:
Physical and chemical properties of biodiesel are influenced by structural features of the fatty acids, such as chain length, degree of unsaturation and branching of the carbon chain. This study investigated if microalgal fatty acid profiles are suitable for biodiesel characterization and species selection through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Fatty acid methyl ester (FAME) profiles were used to calculate the likely key chemical and physical properties of the biodiesel [cetane number (CN), iodine value (IV), cold filter plugging point, density, kinematic viscosity, higher heating value] of nine microalgal species (this study) and twelve species from the literature, selected for their suitability for cultivation in subtropical climates. An equal-parameter weighted (PROMETHEE-GAIA) ranked Nannochloropsis oculata, Extubocellulus sp. and Biddulphia sp. highest; the only species meeting the EN14214 and ASTM D6751-02 biodiesel standards, except for the double bond limit in the EN14214. Chlorella vulgaris outranked N. oculata when the twelve microalgae were included. Culture growth phase (stationary) and, to a lesser extent, nutrient provision affected CN and IV values of N. oculata due to lower eicosapentaenoic acid (EPA) contents. Application of a polyunsaturated fatty acid (PUFA) weighting to saturation led to a lower ranking of species exceeding the double bond EN14214 thresholds. In summary, CN, IV, C18:3 and double bond limits were the strongest drivers in equal biodiesel parameter-weighted PROMETHEE analysis.
Resumo:
The microstructures of the quenched melts of samples of Y123 and Y123+15-20 mol% Y211 with PtO2 and CeO2 additives have been examined with optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectrometry (EDS) and X-ray Diffractometry (XRD). Significantly higher temperatures are required for the formation of dendritic or lamellar eutectic patterns throughout the samples with PtO2 and CeO2 additives as compared to samples without additives. The BaCuO2 (BCl) phase appears first in solid form and, instead of rapidly melting, is slowly dissolving or decomposing in the oxygen depleted melt. PtO2 and CeO2 additives slow down or shift to higher temperatures the dissolution or decomposition process of BCl. A larger fraction of BCl in solid form explains why samples with additives have higher viscosities and hence lower diffusivities than samples without additives. There is also a reduction in the Y solubility to about half the value in samples without additives. The mechanism that limits the Ostwald ripening of the Y211 particles is correlated to the morphology of the quenched partial melt. It is diffusion controlled for a finely mixed morphology and interface-controlled when the melt quenches into dendritic or lamellar eutectic patterns. The change in the morphology of the Y211 particles from blocky to acicular is related to an equivalent undercooling of the Y-Ba-Cu-O partial melt, particularly through the crystallization of BCl.
Resumo:
We demonstrate for the first time the ionic-liquid-mediated synthesis of nanostructured CuTCNQ by the simple immersion of copper in a solution of TCNQ where the viscosity of the medium significantly impacts the corrosion–crystallization process and the final morphology of the material.
Resumo:
In this study, the mixed convection heat transfer and fluid flow behaviors in a lid-driven square cavity filled with high Prandtl number fluid (Pr = 5400, ν = 1.2×10-4 m2/s) at low Reynolds number is studied using thermal Lattice Boltzmann method (TLBM) where ν is the viscosity of the fluid. The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK (Bhatnagar-Gross-Krook) model. The effects of the variations of non dimensional mixed convection parameter called Richardson number(Ri) with and without heat generating source on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles as well as stream function and temperature contours for Ri ranging from 0.1 to 5.0 with other controlling parameters that present in this study. It is found that LBM has good potential to simulate mixed convection heat transfer and fluid flow problem. Finally the simulation results have been compared with the previous numerical and experimental results and it is found to be in good agreement.
Resumo:
Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Australia has been populated for more than 40,000 years with Indigenous Australians joined by European settlers only 230 years ago. The first settlers consisted of convicts from more than 28 countries and members of the British army who arrived in 1788 to establish a British penal colony. Mass migration in the nineteenth century with one and a half million immigrants from Europe, principally from the United Kingdom and Ireland (Haines and Shlomowitz, 1992), established the continent as an Anglo society in the Pacific. In the twentieth century immigrants came from many European countries and in the latter decades from many parts of Asia and the Middle East (Collins, 1991, pp.10-13). In the 21st century Australia has an ethnically and culturally diverse population. The original Indigenous population of Australia accounts for approximately 460,000 or 2.5 per cent of the total population (ABS, 2006a). Estimates are that around 4.5m. persons in the population (close to 20 per cent), were born outside Australia with the majority of these arriving from Europe, principally the United Kingdom, and New Zealand (ABS, 2006b). Like many other countries, Australia has a legacy of discrimination and inequality in employment. Propelled by racist ideologies and the male breadwinner ideology, Indigenous Australians, and non-European immigrants, and women were barred from certain jobs and paid less for their work than any white male counterpart. These conditions were legally sanctioned through the industrial relations system and other laws in the nineteenth and first half of the twentieth century. Since the 1960s a dramatic change has occurred in social policy and national legislation and Australia today has an extensive array of laws which forbid employment discrimination on race, ethnicity, gender and many other characteristics, and other approaches which promote proactive organizational plans and actions to achieve equity in employment. This chapter outlines these developments.
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
Composite polymer insulators provide many advantages over the traditional porcelain insulators and they are increasingly being used at both transmission and distribution levels. In the present paper, an epoxy resin/silica nanocomposite dielectric material (NDM) structure is proposed and fabricated. Hydrophobic fumed silica is incorporated in epoxy resin matrix and acetone is adopted as media agent to effectively achieve homogenous dispersion of the nano-scale silica filler. The acetone also acts as diluents to reduce viscosity before the curing phase of epoxy resin and enables bubbles to escape from being trapped. Through partial discharge (PD) and surface aging tests, it is illustrated that the inception of surface discharge of the proposed NDM is relatively higher than that of the non-filled counterpart, and a better PD resistivity was observed in the negative half cycle regarding to applied AC voltage. Results of surface aging test indicate that surface discharge activity is retarded over the test conducting time. By contrast, surface discharge developed to the opposite way on the non-filled sample. Therefore, the proposed NDM could provide better safety reliability and lower maintenance cost to industrial application compared with nonfilled conventional epoxy resin.
Resumo:
Commercially viable carbon–neutral biodiesel production from microalgae has potential for replacing depleting petroleum diesel. The process of biodiesel production from microalgae involves harvesting, drying and extraction of lipids which are energy- and cost-intensive processes. The development of effective large-scale lipid extraction processes which overcome the complexity of microalgae cell structure is considered one of the most vital requirements for commercial production. Thus the aim of this work was to investigate suitable extraction methods with optimised conditions to progress opportunities for sustainable microalgal biodiesel production. In this study, the green microalgal species consortium, Tarong polyculture was used to investigate lipid extraction with hexane (solvent) under high pressure and variable temperature and biomass moisture conditions using an Accelerated Solvent Extraction (ASE) method. The performance of high pressure solvent extraction was examined over a range of different process and sample conditions (dry biomass to water ratios (DBWRs): 100%, 75%, 50% and 25% and temperatures from 70 to 120 ºC, process time 5–15 min). Maximum total lipid yields were achieved at 50% and 75% sample dryness at temperatures of 90–120 ºC. We show that individual fatty acids (Palmitic acid C16:0; Stearic acid C18:0; Oleic acid C18:1; Linolenic acid C18:3) extraction optima are influenced by temperature and sample dryness, consequently affecting microalgal biodiesel quality parameters. Higher heating values and kinematic viscosity were compliant with biodiesel quality standards under all extraction conditions used. Our results indicate that biodiesel quality can be positively manipulated by selecting process extraction conditions that favour extraction of saturated and mono-unsaturated fatty acids over optimal extraction conditions for polyunsaturated fatty acids, yielding positive effects on cetane number and iodine values. Exceeding biodiesel standards for these two parameters opens blending opportunities with biodiesels that fall outside the minimal cetane and maximal iodine values.