119 resultados para ENVIRONMENTAL-CONDITIONS
Resumo:
Carbon nanotubes (CNTs) have excellent electrical, mechanical and electromechanical properties. When CNTs are incorporated into polymers, electrically conductive composites with high electrical conductivity at very low CNT content (often below 1% wt CNT) result. Due to the change in electrical properties under mechanical load, carbon nanotube/polymer composites have attracted significant research interest especially due to their potential for application in in-situ monitoring of stress distribution and active control of strain sensing in composite structures or as strain sensors. To sucessfully develop novel devices for such applications, some of the major challenges that need to be overcome include; in-depth understanding of structure-electrical conductivity relationships, response of the composites under changing environmental conditions and piezoresistivity of different types of carbon nanotube/polymer sensing devices. In this thesis, direct current (DC) and alternating current (AC) conductivity of CNT-epoxy composites was investigated. Details of microstructure obtained by scanning electron microscopy were used to link observed electrical properties with structure using equivalent circuit modeling. The role of polymer coatings on macro and micro level electrical conductivity was investigated using atomic force microscopy. Thermal analysis and Raman spectroscopy were used to evaluate the heat flow and deformation of carbon nanotubes embedded in the epoxy, respectively, and related to temperature induced resistivity changes. A comparative assessment of piezoresistivity was conducted using randomly mixed carbon nanotube/epoxy composites, and new concept epoxy- and polyurethane-coated carbon nanotube films. The results indicate that equivalent circuit modelling is a reliable technique for estimating values of the resistance and capacitive components in linear, low aspect ratio-epoxy composites. Using this approach, the dominant role of tunneling resistance in determining the electrical conductivity was confirmed, a result further verified using conductive-atomic force microscopy analysis. Randomly mixed CNT-epoxy composites were found to be highly sensitive to mechanical strain and temperature variation compared to polymer-coated CNT films. In the vicinity of the glass transition temperature, the CNT-epoxy composites exhibited pronounced resistivity peaks. Thermal and Raman spectroscopy analyses indicated that this phenomenon can be attributed to physical aging of the epoxy matrix phase and structural rearrangement of the conductive network induced by matrix expansion. The resistivity of polymercoated CNT composites was mainly dominated by the intrinsic resistivity of CNTs and the CNT junctions, and their linear, weakly temperature sensitive response can be described by a modified Luttinger liquid model. Piezoresistivity of the polymer coated sensors was dominated by break up of the conducting carbon nanotube network and the consequent degradation of nanotube-nanotube contacts while that of the randomly mixed CNT-epoxy composites was determined by tunnelling resistance between neighbouring CNTs. This thesis has demonstrated that it is possible to use microstructure information to develop equivalent circuit models that are capable of representing the electrical conductivity of CNT/epoxy composites accurately. New designs of carbon nanotube based sensing devices, utilising carbon nanotube films as the key functional element, can be used to overcome the high temperature sensitivity of randomly mixed CNT/polymer composites without compromising on desired high strain sensitivity. This concept can be extended to develop large area intelligent CNT based coatings and targeted weak-point specific strain sensors for use in structural health monitoring.
Resumo:
Spatio-Temporal interest points are the most popular feature representation in the field of action recognition. A variety of methods have been proposed to detect and describe local patches in video with several techniques reporting state of the art performance for action recognition. However, the reported results are obtained under different experimental settings with different datasets, making it difficult to compare the various approaches. As a result of this, we seek to comprehensively evaluate state of the art spatio- temporal features under a common evaluation framework with popular benchmark datasets (KTH, Weizmann) and more challenging datasets such as Hollywood2. The purpose of this work is to provide guidance for researchers, when selecting features for different applications with different environmental conditions. In this work we evaluate four popular descriptors (HOG, HOF, HOG/HOF, HOG3D) using a popular bag of visual features representation, and Support Vector Machines (SVM)for classification. Moreover, we provide an in-depth analysis of local feature descriptors and optimize the codebook sizes for different datasets with different descriptors. In this paper, we demonstrate that motion based features offer better performance than those that rely solely on spatial information, while features that combine both types of data are more consistent across a variety of conditions, but typically require a larger codebook for optimal performance.
Resumo:
Objective: This research investigates older people’s use of transportation to develop strategies for age-friendly transportation within the community. Methods: Data for this study was derived from Global Positioning System (GPS) tracking of thirteen people aged 55 years and older, together with self-report information recorded in travel diaries about daily activities undertaken outside the home over a period of seven days. Semi-structured interviews were aided by individual maps to investigate engagement in out-of-home activities and verify the recorded GPS data. Results: Overall, participants were highly reliant on the car for daily commuting. Walking, biking and public transport options were unattractive due to environmental conditions, accessibility and usability. Conclusion: Participation within the community and access to services is facilitated by private and public transportation. It is therefore critical to address accessibility and usability issues faced by older people to enable them to maintain their mobility, and ensure access to services, especially when driving ceases.
Resumo:
Bouncing Back Architecture Exhibition: This exhibition showcases interpretations of urban resiliency by 2nd and 4th Year undergraduate architecture students who explore the notion of Bouncing Back from the 2011 Queensland floods, in the context of contemporary Brisbane built environment. Design solutions have been expressed in a variety of forms including emergency shelters, flood-proof housing and a range of urban designs, some of which address extreme environmental conditions. Design Process Workshop | Architecture Workshop with Queensland Academy of Creative Industries Students: In collaboration with Homegrown Facilitator Natalie Wright, Lindy Osborne and Glenda Caldwell and some of their architecture students from the QUT School of Design, extended the university design studio experience to 18 Secondary School students, who brainstormed and designed emergency food distribution shelters for those affected by floods. Designs and models created in the workshop were subsequently included in the Bouncing Back Architecture Exhibition.
Resumo:
This paper summarises the achievements of the Smart Skies Project, a three-year, multi-award winning international project that researched, developed and extensively flight tested four enabling aviation technologies: an electrooptical mid-air collision avoidance system, a static obstacle avoidance system, a mobile ground-based air traffic surveillance system, and a global automated airspace separation management system. The project included the development of manned and unmanned flight test aircraft, which were used to characterise the performance of the prototype systems for a range of realistic scenarios under a variety of environmental conditions. In addition to the collection of invaluable flight data, the project achieved world-firsts in the demonstration of future automated collision avoidance and separation management concepts. This paper summarises these outcomes, the overall objectives of the project, the research and the development of the prototype systems, the engineering of the flight test systems, and the results obtained from flight-testing.
Resumo:
Current state of the art robot mapping and navigation systems produce impressive performance under a narrow range of robot platform, sensor and environmental conditions, in contrast to animals such as rats that produce “good enough” maps that enable them to function under an incredible range of situations. In this paper we present a rat-inspired featureless sensor-fusion system that assesses the usefulness of multiple sensor modalities based on their utility and coherence for place recognition during a navigation task, without knowledge as to the type of sensor. We demonstrate the system on a Pioneer robot in indoor and outdoor environments with abrupt lighting changes. Through dynamic weighting of the sensors, the system is able to perform correct place recognition and mapping where the static sensor weighting approach fails.
Resumo:
It is certain that there will be changes in environmental conditions across the globe as a result of climate change. Such changes will require the building of biological, human and infrastructure resilience. In some instances the building of such resilience will be insufficient to deal with extreme changes in environmental conditions and legal frameworks will be required to provide recognition and support for people dislocated because of environmental change. Such dislocation may occur internally within the country of original origin or externally into another State’s territory. International and national legal frameworks do not currently recognise or assist people displaced as a result of environmental factors including displacement occurring as a result of climate change. Legal frameworks developed to deal with this issue will need to consider the legal rights of those people displaced and the legal responsibilities of those countries required to respond to such displacement. The objective of this article is to identify the most suitable international institution to host a program addressing climate displacement. There are a number of areas of international law that are relevant to climate displacement, including refugee law, human rights law and international environmental law. These regimes, however, were not designed to protect people relocating as a result of environmental change. As such, while they indirectly may be of relevance to climate displacement, they currently do nothing to directly address this complex issue. In order to determine the most appropriate institution to address and regulate climate displacement, it is imperative to consider issues of governance. This paper seeks to examine this issue and determine whether it is preferable to place climate displacement programs into existing international legal frameworks or whether it is necessary to regulate this area in an entirely new institution specifically designed to deal with the complex and cross-cutting issues surrounding the topic. Commentators in this area have proposed three different regulatory models for addressing climate displacement. These models include: (a) Expand the definition of refugee under the Refugee Convention to encompass persons displaced by climate change; (b) Implement a new stand alone Climate Displacement Convention; and (c) Implement a Climate Displacement Protocol to the UNFCCC. This article will examine each of these proposed models against a number of criteria to determine the model that is most likely to address the needs and requirements of people displaced by climate change. It will also identify the model that is likely to be most politically acceptable and realistic for those countries likely to attract responsibilities by its implementation. In order to assess whether the rights and needs of the people to be displaced are to be met, theories of procedural, distributive and remedial justice will be used to consider the equity of the proposed schemes. In order to consider the most politically palatable and realistic scheme, reference will be made to previous state practice and compliance with existing obligations in the area. It is suggested that the criteria identified by this article should underpin any future climate displacement instrument.
Resumo:
This paper will focus on the legal issues associated with people displaced as a result of water scarcity. Human displacement can lead to internal displacement (displacement of people within their country) and external displacement (displacement of people into another country). If the displacement takes place as a result of climate change these people may be referred to as climate refugees. The majority of work on climate refugees has focused on those people that will lose their homes as a result of sea –level rise. The number of people that could be displaced as a result of prolonged drought and lack of adequate water supplies is likely to be far more significant in number. There are estimates that around 2.8 billion people will suffer water shortages by 2025 and many of these people are at increased risk of internal or external displacement. Certain groups are more likely to be displaced as a result of prolonged drought or water scarcity. These groups include indigenous and minorities groups living in areas that are more susceptible to climate change and groups living in areas with a history of water shortage and supply issues. People displaced as a result of water scarcity are at increased risks of malnutrition and of dehydration. Furthermore the lack of adequate water supplies in such areas increases the risk and spread of disease among the population. In certain instances internal and external displacement may lead to escalation of conflict and competition for water resources in newly settled territories. This paper will use case studies from Australia (indigenous groups and rural landholders) and East Africa (Ethiopia, Sudan and Kenya) to demonstrate the significance of human displacement arising as a result of water scarcity. Climate adaptation policy frameworks will need to address a number of legal issues, arising as a result of climate displacement from water scarcity. There are a number of unresolved legal issues for both categories of environmental displaced people. The major legal issue for externally environmentally displaced people is lack of international recognition and support for these people. The Climate Change Convention, the Refugee Convention, the Desertification Convention and Human Rights instruments all fail to provide recognition for people externally displaced as a result of environmental conditions. Similarly there is a lack of legal recognition and legal support mechanisms to assist those people internally displaced by environmental conditions. The lack of developed environmental rights in most countries contributes to this problem. Polices and governance frameworks must be put in place which aims to prevent such displacement through programs identifying populations at risk and instigating damage mitigation and relocation programs. In addition there are a number of legal issues which may arise such as; rights of compensation, property and tenure disputes, increases on the water demand and environmental degradation in places of relocation and jurisdictional issues arising in federal countries. This paper will provide an overview of the legal issues at the international and national levels arising as a result of climate displacement from water scarcity.
Resumo:
Concepts used in this chapter include: Thermoregulation:- Thermoregulation refers to the body’s sophisticated, multi-system regulation of core body temperature. This hierarchical system extends from highly thermo-sensitive neurons in the preoptic region of the brain proximate to the rostral hypothalamus, down to the brain stem and spinal cord. Coupled with receptors in the skin and spine, both central and peripheral information on body temperature is integrated to inform and activate the homeostatic mechanisms which maintain our core temperature at 37oC.1 Body heat is lost through the skin, via respiration and excretions. The skin is perhaps the most important organ in regulating heat loss. Hyporthermia:- Hypothermia is defined as core body temperature less than 350C and is the result of imbalance between the body’s heat production and heat loss mechanisms. Hypothermia may be accidental, or induced for clinical benefit i.e: neurological protection (therapeutic hypothermia). External environmental conditions are the most common cause of accidental hypothermia, but not the only causes of hypothermia in humans. Other causes include metabolic imbalance; trauma; neurological and infectious disease; and exposure to toxins such as organophosphates. Therapeutic Hypothermia:- In some circumstances, hypothermia can be induced to protect neurological functioning as a result of the associated decrease in cerebral metabolism and energy consumption. Reduction in the extent of degenerative processes associated with periods of ischaemia such as excitotoxic cascade; apoptotic and necrotic cell death; microglial activation; oxidative stress and inflammation associated with ischaemia are averted or minimised.2 Mild hypothermia is the only effective treatment confirmed clinically for improving the neurological outcomes of patient’s comatose following cardiac arrest.3
Resumo:
Methane (CH4) is an important greenhouse gas with a global warming potential (GWP) 25 times greater than carbon dioxide (CO2) that can be produced or consumed in soils depending on environmental conditions and other factors. Biochar application to soils has been shown to reduce CH4 emissions and to increase CH4 consumption. However, the effects of rice husk biochar (RB) have not been thoroughly investigated. Two 60-day laboratory incubation experiments were conducted to investigate the effects of amending two soil types with RB, raw mill mud (MM) and composted mill mud (CM) on soil CH4 consumption and emissions. Soil cores incubated in 1 L glass jars and gas samples were analysed for CH4 using gas chromatography. Average CH4 consumption rates varied from -0.06 to -0.68 g CH4-C( )/ha/d in sandy loam soil and -0.59 to -1.00 g CH4-C/ha/d in clay soil. Application of RB resulted in CH4 uptake of -0.52 to -0.55 g CH4-C/ha/d in sandy loam and -0.76 to -0.91 g CH4-C/ha/d in clay soil. Addition of MM showed low CH4 emissions or consumption at 60% water-filled pore space (WFPS) in both soils. However, at high water contents (>75% WFPS) the application of MM produced high rates of CH4 emissions which were significantly suppressed when RB was added. Cumulative emissions of the MM treatment produced 108.9 g CH4-C/ha at 75% WFPS and 11 459.3 g CH4-C/ha at 90% WFPS in sandy loam soil over a period of 60 days. RB can increase CH4 uptake under low soil water content (SWC) and decrease CH4 emissions under anaerobic conditions. CM expressed more potential to reduce CH4 emissions than those of MM.
Resumo:
Railway bridges deteriorate with age. Factors such as environmental effects on different materials of a bridge, variation of loads, fatigue, etc will reduce the remaining life of bridges. Bridges are currently rated individually for maintenance and repair actions according to the structural conditions of their elements. Dealing with thousands of bridges and several factors that cause deterioration, makes the rating process extremely complicated. Current simplified but practical rating methods are not based on an accurate structural condition assessment system. On the other hand, the sophisticated but more accurate methods are only used for a single bridge or particular types of bridges. It is therefore necessary to develop a practical and accurate system which will be capable of rating a network of railway bridges. This paper introduces a new method for rating a network of bridges based on their current and future structural conditions. The method identifies typical bridges representing a group of railway bridges. The most crucial agents will be determined and categorized to criticality and vulnerability factors. Classification based on structural configuration, loading, and critical deterioration factors will be conducted. Finally a rating method for a network of railway bridges that takes into account the effects of damaged structural components due to variations in loading and environmental conditions on the integrity of the whole structure will be proposed. The outcome of this research is expected to significantly improve the rating methods for railway bridges by considering the unique characteristics of different factors and incorporating the correlation between them.
Resumo:
Railway bridges deteriorate with age. Factors such as environmental effects on different materials of a bridge, variation of loads, fatigue, etc. will reduce the remaining life of bridges. Dealing with thousands of bridges and several factors that cause deterioration, makes the rating process extremely complicated. Current simplified but practical methods of rating a network of bridges are not based on an accurate structural condition assessment system. On the other hand, the sophisticated but more accurate methods are only used for a single bridge or particular types of bridges. It is therefore necessary to develop a practical and accurate system, which will be capable of rating a network of railway bridges. This article introduces a new method to rate a network of bridges based on their current and future structural conditions. The method identifies typical bridges representing a group of railway bridges. The most crucial agents will be determined and categorized to criticality and vulnerability factors. Classification based on structural configuration, loading, and critical deterioration factors will be conducted. Finally a rating method for a network of railway bridges that takes into account the effects of damaged structural components due to variations in loading and environmental conditions on the integrity of the whole structure will be proposed. The outcome of this article is expected to significantly improve the rating methods for railway bridges by considering the unique characteristics of different factors and incorporating the correlation among them.
Resumo:
Current older adult capability data-sets fail to account for the effects of everyday environmental conditions on capability. This article details a study that investigates the effects of everyday ambient illumination conditions (overcast, 6000 lx; in-house lighting, 150 lx and street lighting, 7.5 lx) and contrast (90%, 70%, 50% and 30%) on the near visual acuity (VA) of older adults (n= 38, 65-87 years). VA was measured at a 1-m viewing distance using logarithm of minimum angle of resolution (LogMAR) acuity charts. Results from the study showed that for all contrast levels tested, VA decreased by 0.2 log units between the overcast and street lighting conditions. On average, in overcast conditions, participants could detect detail around 1.6 times smaller on the LogMAR charts compared with street lighting. VA also significantly decreased when contrast was reduced from 70% to 50%, and from 50% to 30% in each of the ambient illumination conditions. Practitioner summary: This article presents an experimental study that investigates the impact of everyday ambient illumination levels and contrast on older adults' VA. Results show that both factors have a significant effect on their VA. Findings suggest that environmental conditions need to be accounted for in older adult capability data-sets/designs.
Resumo:
Bananas (Musa sp) are one of the most important food crops in the world and provide a staple food and source of income in many households especially in Africa. Diseases are a major constraint to production with bunchy top, caused by Banana bunchy top virus (BBTV) generally considered the most important virus disease of bananas worldwide. Of the fungal diseases, Fusarium wilt, caused by the Fusarium oxysporum f.sp cubense (Foc), and black Sigatoka, caused by Mycosphaerella fijiensis, are arguably two of the most important and cause significant yield losses. The low fertility of commercially important banana cultivars has hampered efforts to generate disease resistance using conventional breeding. Possible alternative strategies to generate or increase disease resistance are through genetic engineering or by manipulation of the innate plant defence mechanisms, namely systemic acquired resistance (SAR). The first research component of this thesis describes attempts to generate BBTV-resistant banana plants using a genetic modification approach. The second research component of the thesis focused on the identification of a potential marker gene associated with SAR in banana plants and a comparison of the expression levels of the marker gene in response to biotic and abiotic stresses, and chemical inducers. Previous research at QUT CTCB showed that replication of BBTV DNA components in banana embryogenic cell suspensions (ECS) was abolished following co-bombardment with 1.1mers of mutated BBTV DNA-R. BBTV DNA-R encodes the master replication protein (Rep) and is the only viral protein essential for BBTV replication. In this study, ECS of banana were stably transformed with the same constructs, each containing a different mutation in BBTV DNA-R, namely H41G, Y79F and K187M, to examine the effect on virus replication in stably transformed plants. Cells were also transformed with a construct containing a native BBTV Rep. A total of 16, 16, 11 and five lines of stably transformed banana plants containing the Y79F, H41G, K187M and native Rep constructs, respectively, were generated. Of these, up to nine replicates from Y79F lines, four H41G lines, seven K187M lines and three native Rep lines were inoculated with BBTV by exposure to viruliferous aphids in two separate experiments. At least one replicate from each of the nine Y79F lines developed typical bunchy top symptoms and all tested positive for BBTV using PCR. Of the four H41G lines tested, at least one replicate from three of the lines showed symptoms of bunchy top and tested positive using PCR. However, none of the five replicates of one H41G line (H41G-3) developed symptoms of bunchy top and none of the plants tested positive for BBTV using PCR. Of the seven K187M lines, at least one replicate of all lines except one (K187M-1) developed symptoms of bunchy top and tested positive for BBTV. Importantly, none of the four replicates of line K187M-1 showed symptoms or tested positive for BBTV. At least one replicate from each of the three native Rep lines developed symptoms and tested positive for BBTV. The H41G-3 and K187M-1 lines possibly represent the first transgenic banana plants generated using a mutated Rep strategy. The second research component of this thesis focused on the identification of SAR-associated genes in banana and their expression levels in response to biotic and abiotic stresses and chemical inducers. The impetus for this research was the observation that tissue-cultured (TC) banana plants were more susceptible to Fusarium wilt disease (and possibly bunchy top disease) than plants grown from field-derived suckers, possibly due to decreased levels of SAR gene expression in the former. In this study, the pathogenesis-related protein 1 (PR-1) gene was identified as a potential marker for SAR gene expression in banana. A quantitative real-time PCR assay was developed and optimised in order to determine the expression of PR-1, with polyubiquitin (Ubi-1) found to be the most suitable reference gene to enable relative quantification. The levels of PR-1 expression were subsequently compared in Lady Finger and Cavendish (cv. Williams) banana plants grown under three different environmental conditions, namely in the field, the glass house and in tissue-culture. PR-1 was shown to be expressed in both cultivars growing under different conditions. While PR-1 expression was highest in the field grown bananas and lowest in the TC bananas in Lady Finger cultivar, this was not the case in the Cavendish cultivar with glass house plants exhibiting the lowest PR-1 expression compared with tissue culture and field grown plants. The important outcomes of this work were the establishment of a qPCR-based assay to monitor PR-1 expression levels in banana and a preliminary assessment of the baseline PR-1 expression levels in two banana cultivars under three different growing conditions. After establishing the baseline PR-1 expression levels in Cavendish bananas, a study was done to determine whether PR-1 levels could be increased in these plants by exposure to known banana pathogens and non-pathogens, and a known chemical inducer of SAR. Cavendish banana plants were exposed to pathogenic Foc subtropical race 4 (FocSR4) and non-pathogenic Foc race 1 (Foc1), as well as two putative inducers of resistance, Fusarium lycopersici (Fol) and the chemical, acibenzolar-S-methyl (BION®). Tissue culture bananas were acclimatised under either glass house (TCS) or field (TCH) conditions and treatments were carried out in a randomised complete block design. PR-1 expression was determined using qPCR for both TCS and TCH samples for the period 12-72h post-exposure. Treatment of TCH plants using Foc1 and FocSR4 resulted in 120 and 80 times higher PR-1 expression than baseline levels, respectively. For TCS plants treated with Foc1, PR-1 expression was 30 times higher than baseline levels at 12h post-exposure, while TCS plants treated with FocSR4 showed the highest PR-1 expression (20 times higher than baseline levels) at 72h post-exposure. Interestingly, when TCS plants were treated with Fol there was a marked increase of PR-1 expression at 12 h and 48 h following treatment which was 4 and 8 times higher than the levels observed when TCS plants were treated with Foc1 and FocSR4, respectively. In contrast, when TCH plants were treated with Fol only a slight increase in PR-1 expression was observed at 12 h, which eventually returned to baseline levels. Exposure of both TCS and TCH plants to BION® resulted in no effect on PR-1 expression levels at any time-point. The major outcome of the SAR study was that the glass house acclimatised tissue culture bananas exhibited lower PR-1 gene expression compared to field acclimatised tissue culture plants and the identification of Fol as a good candidate for SAR induction in banana plants exhibiting low PR-1 levels. A number of outcomes that foster understanding of both pathogen-derived and plant innate resistance strategies in order to potentially improve banana resistance to diseases were explored in this study and include identification of potential inducers of systemic acquired resistance and a promising mutated Rep approach for BBTV resistance. The work presented in this thesis is the first report on the generation of potential BBTV resistant bananas using the mutated Rep approach. In addition, this is the first report on the status of SAR in banana grown under different conditions of exposure to the biotic and abiotic environment. Further, a robust qPCR assay for the study of gene expression using banana leaf samples was developed and a potential inducer of SAR in tissue culture bananas identified which could be harnessed to increase resistance in tissue culture bananas.
Resumo:
This paper presents an innovative and practical approach to controlling heave motion in the presence of acute stochastic atmospheric disturbances during landing operations of an Unmanned Autonomous Helicopter (UAH). A heave motion model of an UAH is constructed for the purpose of capturing dynamic variations of thrust due to horizontal wind gusts. Additionally, through construction of an effective observer to estimate magnitudes of random gusts, a promising and feasible feedback-feedforward PD controller is developed, based on available measurements from onboard equipment. The controller dynamically and synchronously compensates for aerodynamic variations of heave motion resulting from gust influence, to increase the disturbance-attenuation ability of the UAH in a windy environment. Simulation results justify the reliability and efficiency of the suggested gust observer to estimate gust levels when applied to the heave motion model of a small unmanned helicopter, and verify suitability of the recommended control strategy to realistic environmental conditions.