109 resultados para Double stars
Resumo:
Thermogravimetric analysis (TG) and powder X-ray diffraction (PXRD) were used to study some selected Mg/Al and Zn/Al layered double hydroxides (LDHs) prepared by co-precipitation. A Mg/Al hydrotalcite was investigated before and after reformation in fluoride and nitrate solutions. Little change in the TG or PXRD patterns was observed. It was proposed that successful intercalation of nitrate anions has occurred. However, the absence of any change in the d(003) interlayer spacing suggests that fluoride anions were not intercalated between the LDH layers. Any fluoride anions that were removed from solution are most likely adsorbed onto the outer surfaces of the hydrotalcite. As fluoride removal was not quantified it is not possible to confirm that this has happened without further experimentation. Carbonate is probably intercalated into the interlayer of these hydrotalcites, as well as fluoride or nitrate. The carbonate most likely originates from either incomplete decarbonation during thermal activation or adsorption from the atmosphere or dissolved in the deionised water. Small and large scale co-precipitation syntheses of a Zn/Al LDH were also investigated to determine if there was any change in the product. While the small scale experiment produced a good quality LDH of reasonable purity; the large scale synthesis resulted in several additional phases. Imprecise measurement and difficulty in handling the large quantities of reagents appeared to be sufficient to alter the reaction conditions causing a mixture of phases to be formed.
Resumo:
Boron, which is an essential element for plants, is toxic to humans and animals at high concentrations. Layered double hydroxides (LDHs) and thermally activated LDHs have shown good uptake of a range of boron species in laboratory scale experiments when compared to current available methods, which are for the most part ineffective or prohibitively expensive. LDHs were able to remove anions from water by anion exchange, the reformation (or memory) effect and direct precipitation. The main mechanism of boron uptake appeared to be anion exchange, which was confirmed by powder X-ray diffraction (XRD) measurements. Solution pH appeared to have little effect on boron sorption while thermal activation did not always significantly improve boron uptake. In addition, perpetration of numerous LDHs with varying boron anions in the interlayer region by direct co-precipitation and anion exchange have been reported by a number of groups. The composition and orientation of the interlayer boron ions could be identified with reasonable certainty by applying a number of characterisation techniques including: powder XRD, nuclear magnetic resonance spectroscopy (NMR), X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy. There is still considerable scope for future research on the application of LDHs for the removal of boron contaminants.
Resumo:
In eukaryotes, genomic DNA is tightly compacted into a protein-DNA complex known as chromatin. This dense structure presents a barrier to DNA-dependent processes including transcription, replication and DNA repair. The repressive structure of chromatin is overcome by ATP-dependent chromatin remodelling complexes and chromatin-modifying enzymes. There is now ample evidence that DNA double-strand breaks (DSBs) elicit various histone modifications (such as acetylation, deacetylation, and phosphorylation) that function combinatorially to control the dynamic structure of the chromatin microenvironment. The role of these mechanisms during transcription and replication has been well studied, while the research into their impact on regulation of DNA damage response is rapidly gaining momentum. How chromatin structure is remodeled in response to DNA damage and how such alterations influence DSB repair are currently significant questions. This review will summarise the major chromatin modifications and chromatin remodelling complexes implicated in the DNA damage response to DSBs.
Resumo:
Ab initio density functional calculations were performed to study finite-length zigzag (7, 0) @ (16, 0) double-walled carbon nanotubes (DWCNTs) with H-termination at the open ends. We find that such a DWCNT nanodot displays a very large magnetic moment at the zigzag edges and the ground state displays symmetric anti-ferromagnetic coupling. When an external electric field is applied along the direction of tube axis, a gap is opened for one spin channel, whereas another spin channel remains metallic, i.e. half metallicity occurs. Our results suggest an important new avenue for the development of CNT-based spintronic materials with enhanced properties.
Resumo:
Indonesia is a country spread across wide-ranging archipelago, located in South East Asia between two oceans, the Indian and the Pacific. Indonesia is well known as an active tectonic region because it lies on top of three major active tectonic plates: the Eurasian in the North, the Indian Ocean-Australian in the South, and the Pacific plate in the East. The southern and eastern part of the country features a range of volcanic arcs, volcanic mountains, and lowlands with 500 young volcanoes, of which 128 are active and thus representing 15% of the world’s active volcanoes. In the period 2002-2007, approximately 1782 disasters occurred, with hundreds of thousands of lives lost and billions of rupiah in losses incurred: (Floods - 1183 instances, cyclones - 272 instances, and landslides - 252 instances). Of these, the 2004 Aceh tsunami and the 2006 central Java earthquake (impacting predominantly city and suburbs of Yogyakarta) were the most significant. Even so, disaster management experts believe lessons learnt from the two major natural disasters needs to be formalised into laws and institutions before another disaster occurs, regardless of the type of natural disaster – i.e. Volcano eruption or landslide; as opposed to tsunami or earthquake. Following in the wake of disasters occurring in Yogyakarta, many of its community members responded by banding together as one, with the determination of rebuilding its villages and cities through the spirit of ‘gotong royong’. The idea of social interaction; in particular as a collective, consensual, and cooperative nation; has predominantly formed the ideological basis of Indonesia’s societal nature. Many Indonesian terms cohere to this ideology, such as: ‘koperasi” (cooperatives as the basis of economic interactions), ‘musyawarah’ (consensual nature in decision making), and ‘gotong royong’ (mutual assistance). ‘Gotong royong’ has become a key cultural operator in Indonesia, in particular In Jogjakarta. Appropriately so as ‘gotong royong’ is depicted from the traditional Javanese village, where labour is accomplished through reciprocal exchange and the villagers are motivated by a general ethos of selfishness and concern for the common good. The culture of ‘gotong royong’ promotes positive values such as social harmony and mutual reciprocation in disaster-affected areas provides the necessary spirit needed to endure the hardships and for all involved. While gotong royong emphasises the positive notions of mutual family support and deep community level activity there is a potential for contrast against government lead disaster response and recovery management activities especially in settings where sporadic governance mechanisms exist and transparency and accountability in the recovery process of public infrastructure assets have been questioned. This paper thus questions whether Gotong Royong is a double-edged sword, and explores the potential marriage of community values and governance mechanisms for future disaster management planning and practice.
Resumo:
Increasingly, the effectiveness of the present system of taxation of international businesses is being questioned. The problem associated with the taxation of such businesses is twofold. A system of international taxation must be a fair and equitable system, distributing profits between the relevant jurisdictions and, in doing so, avoiding double taxation. At the same time, the prevention of fiscal evasion must be secured. In an attempt to achieve a fair and equitable system Australia adopts unilateral, bilateral and multilateral measures to avoid double taxation and restrict the avoidance of tax. The first step in ascertaining the international allocation of business income is to consider the taxation of business income according to domestic law, that is, the unilateral measures. The treatment of international business income under the Australian domestic law, that is, the Income Tax Assessment Act 1936 (Cth) and Income Tax Assessment Act 1997 (Cth), will depend on two concepts, first, whether the taxpayer is a resident of Australia and secondly, whether the income is sourced in Australia. After the taxation of business profits has been determined according to domestic law it is necessary to consider the applicability of the bilateral measures, that is, the Double Tax Agreements (DTAs) to which Australia is a party, as the DTAs will override the domestic law where there is any conflict. Australia is a party to 40 DTAs with another seven presently being negotiated. The preamble to Australia's DTAs provides that the purpose of such agreements is 'to conclude an Agreement for the avoidance of double taxation and the prevention of fiscal evasion with respect to taxes on income'. Both purposes, for different reasons, are equally important. It has been said that: The taxpayer hopes the treaty will prevent the double taxation of his income; the tax gatherer hopes the treaty will prevent fiscal evasion; and the politician just hopes. The first purpose, the avoidance of double taxation, is achieved through the provision of rules whereby the Contracting States agree to the classification of income and the allocation of that income to a particular State. In this sense DTAs do not allocate jurisdiction to tax but rather provide an arrangement whereby the States agree to restrict their substantive law. The restriction is either through the non-taxing of the income or via the provision of a tax credit.
Resumo:
Medical research represents a substantial departure from conventional medical care. Medical care is patient-orientated, with decisions based on the best interests and/or wishes of the person receiving the care. In contrast, medical research is future-directed. Primarily it aims to contribute new knowledge about illness or disease, or new knowledge about interventions, such as drugs, that impact upon some human condition. Current State and Territory laws and research ethics guidelines in Australia relating to the review of medical research appropriately acknowledge that the functions of medical care and medical research differ. Prior to a medical research project commencing, the study must be reviewed and approved by a Human Research Ethics Committee (HREC). For medical research involving incompetent adults, some jurisdictions require an additional, independent safeguard by way of tribunal or court approval of medical research protocols. This extra review process reflects the uncertainty of medical research involvement, and the difficulties surrogate decision-makers of incompetent adults face in making decisions about others, and deliberating about the risks and benefits of research involvement. Parents of children also face the same difficulties when making decisions about their child’s research involvement. However, unlike the position concerning incompetent adults, there are no similar safeguards under Australian law in relation to the approval of medical research involving children. This column questions why this discrepancy exists with a view to generating further dialogue on the topic.
Resumo:
Objective. To identify whether a standardised Echinacea formulation is effective in the prevention of respiratory and other symptoms associated with long-haul flights. Methods. 175 adults participated in a randomised, double-blind placebo-controlled trial travelling back from Australia to America, Europe, or Africa for a period of 1–5 weeks on commercial flights via economy class. Participants took Echinacea (root extract, standardised to 4.4 mg alkylamides) or placebo tablets. Participants were surveyed before, immediately after travel, and at 4 weeks after travel regarding upper respiratory symptoms and travel-related quality of life. Results. Respiratory symptoms for both groups increased significantly during travel (
Resumo:
Raman and thermo-Raman spectroscopy have been applied to study the mineral formerly known as manasseite now simply renamed as hydrotalcite-2H Mg6Al2(OH)16[CO3]⋅4H2O. The mineral is a member of the homonymous hydrotalcite supergroup. Hydrogen bond distances calculated using a Libowitzky-type empirical function varied between 2.61 and 3.00 Å. Stronger hydrogen bonds were formed by water units as compared to the hydroxyl units. Raman spectroscopy enabled the identification of bands attributed to the hydroxyl units. Two Raman bands at 1059 and 1064 cm-1 are assigned to symmetric stretching modes of the carbonate anion. Thermal treatment shifts these bands to higher wavenumbers indicating a change in the strength of the carbonate bonding.
Resumo:
A nanoparticles size is one of their key physical characteristics that can affect their fate in a human’s respiratory tract (in case of inhalation) and also in the environment. Hence, measuring the size distribution of nanoparticles is absolutely essential and contributes greatly to their characterization. For years, Scanning Mobility Particle Sizers (SMPS), which rely on measuring the electrical mobility diameter of particles, have been used as one of the most reliable real-time instruments for the size distribution measurement of nanoparticles. Despite its benefits, this instrument has some drawbacks, including equivalency problems for non-spherical particles (i.e. assuming a non-spherical particle is equal to a spherical particle of diameter d due to the same electrical mobility), as well as limitations in terms of its use in workplaces, because of its large size and the complexity of its operation...
Resumo:
In this report, a detailed FTIR fitting analysis was used to recognize Mg, Zn and Al homogeneous distribution in MgxZnyAl(x+y)/2-Layered double hydroxide (LDH) hydroxyl layer. In detail, OH-Mg2Al:OH-Mg3 ratios decreased from 95.2:4.8 (MIR) and 94.2:5.8 (NIR) to 58.9:41.1 (MIR) and 61.8:38.2 (NIR), when Mg:Al increased from 2.2:1.0 to 4.1:1.0 in MgAl-LDHs. These fitting results were similar with theoretical calculations of 94.3:5.7 and 59.0:41.0. In a further analysis of MgxZnyAl(x+y)/2-LDHs, OH bonded Zn2Mg, Zn2Al, MgZnAl, Mg2Al and Mg2Zn peaks were identified at 3420, 3430, 3445–3450, 3454 and 3545 cm-1, respectively. With the decrease of Mg:Zn from 3:1 to 1:3, metal-hydroxyl bands changed from OH-Mg2Al and MgZnAl (with a ratio of 49.4:50.6) to OH-MgZnAl and Zn2Al (with a ratio of 55.0:45.0). They were also similar with theoretical calculations of 47.6:52.4 and 54.6:45.4. As a result, these results show that there is an ordered cation distribution in MgxZnyAl(x+y)/2-LDH, and FTIR is feasible in recognizing this structure.
Resumo:
Advanced composite materials offer remarkable potential in the upgrade of civil engineering structures. The evolution of CFRP (carbon fibre reinforced polymer) technologies and their versatility for applications in civil constructions require comprehensive and reliable codes of practice. Guidelines are available on the rehabilitation and retrofit of concrete structures with advanced composite materials. However, there is a need to develop appropriate design guidelines for CFRP strengthened steel structures. It is important to understand the bond characteristics between CFRP and steel plates. This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length is similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough.
Resumo:
We present the treatment rationale and study design of the MetLung phase III study. This study will investigate onartuzumab (MetMAb) in combination with erlotinib compared with erlotinib alone, as second- or third-line treatment, in patients with advanced non-small-cell lung cancer (NSCLC) who are Met-positive by immunohistochemistry. Approximately 490 patients (245 per treatment arm) will receive erlotinib (150 mg oral daily) plus onartuzumab or placebo (15 mg/kg intravenous every 3 weeks) until disease progression, unacceptable toxicity, patient or physician decision to discontinue, or death. The efficacy objectives of this study are to compare overall survival (OS) (primary endpoint), progression-free survival, and response rates between the 2 treatment arms. In addition, safety, quality of life, pharmacokinetics, and translational research will be investigated across treatment arms. If the primary objective (OS) is achieved, this study will provide robust results toward an alternative treatment option for patients with Met-positive second- or third-line NSCLC. © 2012 Elsevier Inc. All Rights Reserved.
Resumo:
The application of layered double hydroxides (LDHs) and thermally activated LDHs for the removal of various fluorine (F-, BF-4), chlorine (Cl-,ClO-4), bromine (Br-, BrO-3) and iodine (I-, IO-3) species from aqueous solutions has been reviewed in this article. LDHs and thermally activated LDHs were able to significantly reduce the concentration of selected anions in laboratory scale experiments. The M2+:M3+ cation ratio of the LDH adsorbent was an important factor which influenced anion uptake. Though LDHs were able to remove some target anion species through anion exchange and surface adsorption thermal activation and reformation generally produced better results. The presence of competing anions including carbonate, phosphate and sulphate had a significant impact on uptake of the target anion as LDHs typically exhibit lower affinity towards monovalent anions compared to anions with multiple charges. The removal of fluoride and perchlorate from aqueous solution by a continuous flow system utilising fixed bed columns packed with LDH adsorbents has also been investigated. The adsorption capacity of the columns at breakpoint was heavily dependent on the flow rate and lower than result reported for the corresponding batch methods. There is still considerable scope for future research on numerous topics summarised in this article.