603 resultados para Donnellan, Keith
Resumo:
In sport and exercise biomechanics, forward dynamics analyses or simulations have frequently been used in attempts to establish optimal techniques for performance of a wide range of motor activities. However, the accuracy and validity of these simulations is largely dependent on the complexity of the mathematical model used to represent the neuromusculoskeletal system. It could be argued that complex mathematical models are superior to simple mathematical models as they enable basic mechanical insights to be made and individual-specific optimal movement solutions to be identified. Contrary to some claims in the literature, however, we suggest that it is currently not possible to identify the complete optimal solution for a given motor activity. For a complete optimization of human motion, dynamical systems theory implies that mathematical models must incorporate a much wider range of organismic, environmental and task constraints. These ideas encapsulate why sports medicine specialists need to adopt more individualized clinical assessment procedures in interpreting why performers' movement patterns may differ.
Resumo:
Although previous work in nonlinear dynamics on neurobiological coordination and control has provided valuable insights from studies of single joint movements in humans, researchers have shown increasing interest in coordination of multi-articular actions. Multi-articular movement models have provided valuable insights on neurobiological systems conceptualised as degenerate, adaptive complex systems satisfying the constraints of dynamic environments. In this paper, we overview empirical evidence illustrating the dynamics of adaptive movement behavior in a range of multi-articular actions including kicking, throwing, hitting and balancing. We model the emergence of creativity and the diversity of neurobiological action in the meta-stable region of self organising criticality. We examine the influence on multi-articular actions of decaying and emerging constraints in the context of skill acquisition. We demonstrate how, in this context, transitions between preferred movement patterns exemplify the search for and adaptation of attractor states within the perceptual motor workspace as a function of practice. We conclude by showing how empirical analyses of neurobiological coordination and control have been used to establish a nonlinear pedagogical framework for enhancing acquisition of multi-articular actions.
Resumo:
A recent article in the Journal of Science and Medicine in Sport by Chapman et al.1 reported data from an empirical investigation comparing lower extremity joint motions, joint coordination and muscle recruitment in expert and novice cyclists. 3D kinematic and intramuscular electromyographic (EMG) analyses revealed no differences between expert and novice cyclists for normalised joint angles and velocities of the pelvis, hip, knee and ankle. However, significant differences in the strength of sagittal plane kinematics for hip–ankle and knee–ankle joint couplings were reported, with expert cyclists displaying tighter coupling relationships than novice cyclists. Furthermore, significant differences between expert and novice cyclists for all muscle recruitment parameters, except timing of peak EMG amplitude, were also reported.
Resumo:
In this third Quantum Interaction (QI) meeting it is time to examine our failures. One of the weakest elements of QI as a field, arises in its continuing lack of models displaying proper evolutionary dynamics. This paper presents an overview of the modern generalised approach to the derivation of time evolution equations in physics, showing how the notion of symmetry is essential to the extraction of operators in quantum theory. The form that symmetry might take in non-physical models is explored, with a number of viable avenues identified.
Resumo:
This chapter elucidates key ideas behind neurocomputational and ecological dynamics and perspectives of understanding the organisation of action in complex neurobiological systems. The need to study the close link between neurobiological systems and their environments (particularly their sensory and movement subsystems and the surrounding energy sources) is advocated. It is proposed how degeneracy in complex neurobiological systems provides the basis for functional variability in organisation of action. In such systems processes of cognition and action facilitate the specific interactions of each performer with particular task and environmental constraints.
Resumo:
In this chapter, ideas from ecological psychology and nonlinear dynamics are integrated to characterise decision-making as an emergent property of self-organisation processes in the interpersonal interactions that occur in sports teams. A conceptual model is proposed to capture constraints on dynamics of decisions and actions in dyadic systems, which has been empirically evaluated in simulations of interpersonal interactions in team sports. For this purpose, co-adaptive interpersonal dynamics in team sports such as rubgy union have been studied to reveal control parameter and collective variable relations in attacker-defender dyads. Although interpersonal dynamics of attackers and defenders in 1 vs 1 situations showed characteristics of chaotic attractors, the informational constraints of rugby union typically bounded dyadic systems into low dimensional attractors. Our work suggests that the dynamics of attacker-defender dyads can be characterised as an evolving sequence since players' positioning and movements are connected in diverse ways over time.
Resumo:
In this chapter we introduce a theoretical framework for studying decision making in sport: the ecological dynamics approach, which we integrate with key ideas from the literature on learning complex motor skills. Our analysis will include insights from Berstein (1967) on the coordination of degrees of freedom and Newell's (1985) model of motor learning. We particularly focus on the role of perceptual degrees of freedom advocated in an ecological approach to learning. In introducing this framework to readers we contrast this perspective with more traditional models of decision-making. Finally, we propose some implications to the training of decision-making skill in sport.
Resumo:
The aims of this chapter are twofold. First, we show how experiments related to nonlinear dynamical systems theory can bring about insights on the interconnectedness of different information sources for action. These include the amount of information as emphasised in conventional models of cognition and action in sport and the nature of perceptual information typically emphasised in the ecological approach. The second aim was to show how, through examining the interconnectedness of these information sources, one can study the emergence of novel tactical solutions in sport; and design experiments where tactical/decisional creativity can be observed. Within this approach it is proposed that perceptual and affective information can be manipulated during practice so that the athlete's cognitive and action systems can be transposed to a meta-stable dynamical performance region where the creation of novel action information may reside.
Resumo:
From an ecological perspective knowledge signifies the degree of fitness of a performer and his/her environment. From this viewpoint, the role of training is to enhance this degree of fit between a specific athlete and the performance environment, instead of the enrichment of memory in the performer. In this regard, ecological psychology distinguishes between perceptual knowledge or "knowledge of" the environment and symbolic knowledge or "knowledge about" the environment. This distinction elucidates how knowing how to act (knowing of) as well as knowing how to verbalise memorial representations (e.g., a verbal description of performance) (knowing about) are both rooted in perception. In this chapter we demonstrate these types of knowledge in decision-making behaviour and exemplify how they can be presented in 1 v 1 practice task contraints in basketball.
Resumo:
Traditionally, the aquisition of skills and sport movement has been characterised by numerous repetitions of presumed model movement pattern to be acquired by learners. This approach has been questioned by research identifying the presence of individualised movement patterns and the low probability of occurrence of two identical movements within and between individuals. In contrast, the differential learning approach claims advantage for incurring variability in the learning process by adding stochastic perturbations during practice. These ideas are exemplified by data from a high jump experiment which compared the effectiveness of classical and a differential training approach with pre-post test design. Results showed clear advantages for the group with additional stochastic perturbation during the aquisition phase in comparison to classically trained athletes. Analogies to similar phenomenological effects in the neurobiological literature are discussed.
Resumo:
Nonlinear Dynamics, provides a framework for understanding how teaching and learning processes function in Teaching Games for Understanding (TGfU). In Nonlinear Pedagogy, emergent movement behaviors in learners arise as a consequence of intrinsic self-adjusted processes shaped by interacting constraints in the learning environment. In a TGfU setting, representative, conditioned games provide ideal opportunities for pedagogists to manipulate key constraints so that self-adjusted processes by players lead to emergent behaviors as they explore functional movement solutions. The implication is that, during skill learning, functional movement variability is necessary as players explore different motor patterns for effective skill execution in the context of the game. Learning progressions in TGfU take into account learners’ development through learning stages and have important implications for organisation of practices, instructions and feedback. A practical application of Nonlinear Pedagogy in a national sports institute is shared to exemplify its relevance for TGfU practitioners.
Resumo:
Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.
Resumo:
The identification of attractors is one of the key tasks in studies of neurobiological coordination from a dynamical systems perspective, with a considerable body of literature resulting from this task. However, with regards to typical movement models investigated, the overwhelming majority of actions studied previously belong to the class of continuous, rhythmical movements. In contrast, very few studies have investigated coordination of discrete movements, particularly multi-articular discrete movements. In the present study, we investigated phase transition behavior in a basketball throwing task where participants were instructed to shoot at the basket from different distances. Adopting the ubiquitous scaling paradigm, throwing distance was manipulated as a candidate control parameter. Using a cluster analysis approach, clear phase transitions between different movement patterns were observed in performance of only two of eight participants. The remaining participants used a single movement pattern and varied it according to throwing distance, thereby exhibiting hysteresis effects. Results suggested that, in movement models involving many biomechanical degrees of freedom in degenerate systems, greater movement variation across individuals is available for exploitation. This observation stands in contrast to movement variation typically observed in studies using more constrained bi-manual movement models. This degenerate system behavior provides new insights and poses fresh challenges to the dynamical systems theoretical approach, requiring further research beyond conventional movement models.
Resumo:
In the study of complex neurobiological movement systems, measurement indeterminacy has typically been overcome by imposing artificial modelling constraints to reduce the number of unknowns (e.g., reducing all muscle, bone and ligament forces crossing a joint to a single vector). However, this approach prevents human movement scientists from investigating more fully the role, functionality and ubiquity of coordinative structures or functional motor synergies. Advancements in measurement methods and analysis techniques are required if the contribution of individual component parts or degrees of freedom of these task-specific structural units is to be established, thereby effectively solving the indeterminacy problem by reducing the number of unknowns. A further benefit of establishing more of the unknowns is that human movement scientists will be able to gain greater insight into ubiquitous processes of physical self-organising that underpin the formation of coordinative structures and the confluence of organismic, environmental and task constraints that determine the exact morphology of these special-purpose devices.
Resumo:
In the region of self-organized criticality (SOC) interdependency between multi-agent system components exists and slight changes in near-neighbor interactions can break the balance of equally poised options leading to transitions in system order. In this region, frequency of events of differing magnitudes exhibits a power law distribution. The aim of this paper was to investigate whether a power law distribution characterized attacker-defender interactions in team sports. For this purpose we observed attacker and defender in a dyadic sub-phase of rugby union near the try line. Videogrammetry was used to capture players’ motion over time as player locations were digitized. Power laws were calculated for the rate of change of players’ relative position. Data revealed that three emergent patterns from dyadic system interactions (i.e., try; unsuccessful tackle; effective tackle) displayed a power law distribution. Results suggested that pattern forming dynamics dyads in rugby union exhibited SOC. It was concluded that rugby union dyads evolve in SOC regions suggesting that players’ decisions and actions are governed by local interactions rules.