145 resultados para Distributed computer-controlled systems
Resumo:
Distributed generators (DGs) are defined as generators that are connected to a distribution network. The direction of the power flow and short-circuit current in a network could be changed compared with one without DGs. The conventional protective relay scheme does not meet the requirement in this emerging situation. As the number and capacity of DGs in the distribution network increase, the problem of coordinating protective relays becomes more challenging. Given this background, the protective relay coordination problem in distribution systems is investigated, with directional overcurrent relays taken as an example, and formulated as a mixed integer nonlinear programming problem. A mathematical model describing this problem is first developed, and the well-developed differential evolution algorithm is then used to solve it. Finally, a sample system is used to demonstrate the feasiblity and efficiency of the developed method.
Resumo:
A distributed fuzzy system is a real-time fuzzy system in which the input, output and computation may be located on different networked computing nodes. The ability for a distributed software application, such as a distributed fuzzy system, to adapt to changes in the computing network at runtime can provide real-time performance improvement and fault-tolerance. This paper introduces an Adaptable Mobile Component Framework (AMCF) that provides a distributed dataflow-based platform with a fine-grained level of runtime reconfigurability. The execution location of small fragments (possibly as little as few machine-code instructions) of an AMCF application can be moved between different computing nodes at runtime. A case study is included that demonstrates the applicability of the AMCF to a distributed fuzzy system scenario involving multiple physical agents (such as autonomous robots). Using the AMCF, fuzzy systems can now be developed such that they can be distributed automatically across multiple computing nodes and are adaptable to runtime changes in the networked computing environment. This provides the opportunity to improve the performance of fuzzy systems deployed in scenarios where the computing environment is resource-constrained and volatile, such as multiple autonomous robots, smart environments and sensor networks.
Resumo:
Given the paradigm of smart grid as the promising backbone for future network, this paper uses this paradigm to propose a new coordination approach for LV network based on distributed control algorithm. This approach divides the LV network into hierarchical communities where each community is controlled by a control agent. Different level of communication has been proposed for this structure to control the network in different operation modes.
Resumo:
This project was a step forward in developing intrusion detection systems in distributed environments such as web services. It investigates a new approach of detection based on so-called "taint-marking" techniques and introduces a theoretical framework along with its implementation in the Linux kernel.
Resumo:
This paper presents a new framework for distributed intrusion detection based on taint marking. Our system tracks information flows between applications of multiple hosts gathered in groups (i.e., sets of hosts sharing the same distributed information flow policy) by attaching taint labels to system objects such as files, sockets, Inter Process Communication (IPC) abstractions, and memory mappings. Labels are carried over the network by tainting network packets. A distributed information flow policy is defined for each group at the host level by labeling information and defining how users and applications can legally access, alter or transfer information towards other trusted or untrusted hosts. As opposed to existing approaches, where information is most often represented by two security levels (low/high, public/private, etc.), our model identifies each piece of information within a distributed system, and defines their legal interaction in a fine-grained manner. Hosts store and exchange security labels in a peer to peer fashion, and there is no central monitor. Our IDS is implemented in the Linux kernel as a Linux Security Module (LSM) and runs standard software on commodity hardware with no required modification. The only trusted code is our modified operating system kernel. We finally present a scenario of intrusion in a web service running on multiple hosts, and show how our distributed IDS is able to report security violations at each host level.
Resumo:
To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.
Resumo:
Distributed generation (DG) resources are commonly used in the electric systems to obtain minimum line losses, as one of the benefits of DG, in radial distribution systems. Studies have shown the importance of appropriate selection of location and size of DGs. This paper proposes an analytical method for solving optimal distributed generation placement (ODGP) problem to minimize line losses in radial distribution systems using loss sensitivity factor (LSF) based on bus-injection to branch-current (BIBC) matrix. The proposed method is formulated and tested on 12 and 34 bus radial distribution systems. The classical grid search algorithm based on successive load flows is employed to validate the results. The main advantages of the proposed method as compared with the other conventional methods are the robustness and no need to calculate and invert large admittance or Jacobian matrices. Therefore, the simulation time and the amount of computer memory, required for processing data especially for the large systems, decreases.
Resumo:
A comparison of relay power minimisation subject to received signal-to-noise ratio (SNR) at the receiver and SNR maximisation subject to the total transmitted power of relays for a typical wireless network with distributed beamforming is presented. It is desirable to maximise receiver quality-of-service (QoS) and also to minimise the cost of transmission in terms of power. Hence, these two optimisation problems are very common and have been addressed separately in the literature. It is shown that SNR maximisation subject to power constraint and power minimisation subject to SNR constraint yield the same results for a typical wireless network. It proves that either one of the optimisation approaches is sufficient.
Resumo:
In this paper, a wind energy conversion system interfaced to the grid using a dual inverter is proposed. One of the two inverters in the dual inverter is connected to the rectified output of the wind generator while the other is directly connected to a battery energy storage system (BESS). This approach eliminates the need for an additional dc-dc converter and thus reduces power losses, cost, and complexity. The main issue with this scheme is uncorrelated dynamic changes in dc-link voltages that results in unevenly distributed space vectors. A detailed analysis on the effects of these variations is presented in this paper. Furthermore, a modified modulation technique is proposed to produce undistorted currents even in the presence of unevenly distributed and dynamically changing space vectors. An analysis on the battery charging/discharging process and maximum power point tracking of the wind turbine generator is also presented. Simulation and experimental results are presented to verify the efficacy of the proposed modulation technique and battery charging/discharging process.
Resumo:
Supercapacitors are increasingly used as short term energy storage elements in distributed generation systems. The traditional approach in integrating them to the main system is the use of interfacing dc-dc converters which introduce additional costs and power losses. This paper therefore, presents a novel direct integration scheme for supercapacitors and thereby eliminates associated costs and power losses of interfacing converters. The idea is simply to replace ordinary capacitors of three-level flying-capacitor rectifiers with supercapacitors and operate them under variable voltage conditions. An analysis on the reduction of power losses by the proposed system is presented. Furthermore, supercapacitor sizing and implementation issues such as effects of the variable voltage operation and resistive behavior of supercapacitors at high frequencies are also discussed. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term power fluctuations in wind generation system.
Resumo:
Battery-supercapacitor hybrid energy storage systems can achieve better power and energy performances compared to their individual use. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid connecting inverter. However, the use of such dc-dc converters introduces additional cost and power losses. Therefore, the possibility of direct connection of energy storage systems, to the dc-link of a diode clamped 3-level inverter is investigated in this paper. Even though the proposed topology does not use dc-dc converters, a vector selection method is proposed to produce a similar control flexibility that is found in the separate dc-dc converter topology. The major issue with the proposed system is the imminent imbalance of the neutral point potential. A PWM technique with modified carriers is used to solve this problem. Simulations are carried out using MATLAB/SIMULINK to verify the efficacy of the proposed system.
Resumo:
This paper explores a new breed of energy storage system interfacing for grid connected photovoltaic (PV) systems. The proposed system uses the popular dual inverter topology in which one inverter is supplied by a PV cell array and the other by a Battery Energy Storage System (BESS). The resulting conversion structure is controlled in a way that both demand matching and maximum power point tracking of the PV cell array are performed simultaneously. This dual inverter topology can produces 2, 3, 4 and 5 level inverter voltage waveforms at the dc-link voltage ratios of 0:1, 1:1, 2:1 and 3:2 respectively. Since the output voltage of the PV cell array and the battery are uncorrelated and dynamically change, the resulting dc-link voltage ratio can take non-integer values as well. These noninteger dc-link voltage ratios produce unevenly distributed space vectors. Therefore, the main issue with the proposed system is the generation of undistorted current even in the presence of unevenly distributed and dynamically changing space vectors. A modified space vector modulation method is proposed in this paper to address this issue and its efficacy is proved by simulation results. The ability of the proposed system to act as an active power source is also verified.
Resumo:
An overview is given of the various energy storage technologies which can be used in distributed generation (DG) schemes. Description of the recent photovoltaic DG initiative in Singapore is included, in which several of the storage systems can find ready applications. Schemes pertaining to the use of solid oxide fuel cell for power quality enhancement and battery energy storage system used in conjunction with wind power generation are also described.
Resumo:
Background: The prevalence of type 2 diabetes is rising with the majority of patients practicing inadequate disease self-management. Depression, anxiety, and diabetes-specific distress present motivational challenges to adequate self-care. Health systems globally struggle to deliver routine services that are accessible to the entire population, in particular in rural areas. Web-based diabetes self-management interventions can provide frequent, accessible support regardless of time and location Objective: This paper describes the protocol of an Australian national randomized controlled trial (RCT) of the OnTrack Diabetes program, an automated, interactive, self-guided Web program aimed to improve glycemic control, diabetes self-care, and dysphoria symptoms in type 2 diabetes patients. Methods: A small pilot trial is conducted that primarily tests program functionality, efficacy, and user acceptability and satisfaction. This is followed by the main RCT, which compares 3 treatments: (1) delayed program access: usual diabetes care for 3 months postbaseline followed by access to the full OnTrack Diabetes program; (2) immediate program: full access to the self-guided program from baseline onward; and (3) immediate program plus therapist support via Functional Imagery Training (FIT). Measures are administered at baseline and at 3, 6, and 12 months postbaseline. Primary outcomes are diabetes self-care behaviors (physical activity participation, diet, medication adherence, and blood glucose monitoring), glycated hemoglobin A1c (HbA1c) level, and diabetes-specific distress. Secondary outcomes are depression, anxiety, self-efficacy and adherence, and quality of life. Exposure data in terms of program uptake, use, time on each page, and program completion, as well as implementation feasibility will be conducted. Results: This trial is currently underway with funding support from the Wesley Research Institute in Brisbane, Australia. Conclusions: This is the first known trial of an automated, self-guided, Web-based support program that uses a holistic approach in targeting both type 2 diabetes self-management and dysphoria. Findings will inform the feasibility of implementing such a program on an ongoing basis, including in rural and regional locations.