288 resultados para Discharge (fluid mechanics)
Resumo:
Thunderstorm downbursts are important for wind engineers as they have been shown to produce the design wind speeds for mid to high return periods in many regions of Australia [1]. In structural design codes (e.g. AS/NZS1170.02-02) an atmospheric boundary layer (ABL) is assumed, and a vertical profile is interpolated from recorded 10 m wind speeds. The ABL assumption is however inaccurate when considering the complex structure of a thunderstorm outflow, and its effects on engineered structures. Several researchers have shown that the downburst, close to its point of divergence is better represented by an impinging wall jet profile than the traditional ABL. Physical modelling is the generally accepted approach to estimate wind loads on structures and it is therefore important to physically model the thunderstorm downburst so that its effects on engineered structures may be studied. An advancement on the simple impinging jet theory, addressed here is the addition of a pulsing mechanism to the jet which allows not only the divergent characteristics of a downburst to be produced, but also it allows the associated leading ring vortex to be developed. The ring vortex modelling is considered very important for structural design as it is within the horizontal vortex that the largest velocities occur [2]. This paper discusses the flow field produced by a pulsed wall jet, and also discusses the induced pressures that this type of flow has on a scaled tall building.
Resumo:
Steady and pulsed flow stationary impinging jets have been employed to simulate the wind field produced by a thunderstorm microburst. The effect on the low level wind field due to jet inclination with respect to the impingement surface has been studied. A single point velocity time history has been compared to the full-scale Andrews AFB microburst for model validation. It was found that for steady flow, jet inclination increased the radial extent of high winds but did not increase the magnitude of these winds when compared to the perpendicular impingement case. It was found that for inclined pulsed flow the design wind conditions could increase compared to perpendicular impingement. It was found that the location of peak winds was affected by varying the outlet conditions.
Resumo:
The wind loading on most structural elements is made up of both an external and internal pressure. Internal pressures are also important for the design of naturally ventilated buildings. The internal pressure is the interaction between the external pressure propagating through the building envelope and any internal plant causing building pressurization. Although the external pressure field can be well defined through a series of wind tunnel tests, modeling complexities makes accurate prediction of the internal pressure difficult. For commercial testing for the determination of design cladding pressures, an internal pressure coefficient is generally assumed from wind loading standards. Several theories regarding the propagation of internal pressures through single and multiple dominant openings have been proposed for small and large flexible buildings (Harris (1990), Holmes, (1979), Liu & Saathoff (1981 ), Vickery (1986, 1994), Vickery & Bloxham (1992), Vickery & Georgiou (1991))...
Resumo:
While the half-angle which encloses a Kelvin ship wave pattern is commonly accepted to be 19.47 degrees, recent observations and calculations for sufficiently fast-moving ships suggest that the apparent wake angle decreases with ship speed. One explanation for this decrease in angle relies on the assumption that a ship cannot generate wavelengths much greater than its hull length. An alternative interpretation is that the wave pattern that is observed in practice is defined by the location of the highest peaks; for wakes created by sufficiently fast-moving objects, these highest peaks no longer lie on the outermost divergent waves, resulting in a smaller apparent angle. In this paper, we focus on the problems of free surface flow past a single submerged point source and past a submerged source doublet. In the linear version of these problems, we measure the apparent wake angle formed by the highest peaks, and observe the following three regimes: a small Froude number pattern, in which the divergent waves are not visible; standard wave patterns for which the maximum peaks occur on the outermost divergent waves; and a third regime in which the highest peaks form a V-shape with an angle much less than the Kelvin angle. For nonlinear flows, we demonstrate that nonlinearity has the effect of increasing the apparent wake angle so that some highly nonlinear solutions have apparent wake angles that are greater than Kelvin's angle. For large Froude numbers, the effect on apparent wake angle can be more dramatic, with the possibility of strong nonlinearity shifting the wave pattern from the third regime to the second. We expect our nonlinear results will translate to other more complicated flow configurations, such as flow due to a steadily moving closed body such as a submarine.
Resumo:
Modelling of food processing is complex because it involves sophisticated material and transport phenomena. Most of the agricultural products such fruits and vegetables are hygroscopic porous media containing free water, bound water, gas and solid matrix. Considering all phase in modelling is still not developed. In this article, a comprehensive porous media model for drying has been developed considering bound water, free water separately, as well as water vapour and air. Free water transport was considered as diffusion, pressure driven and evaporation. Bound water assumed to be converted to free water due to concentration difference and also can diffuse. Binary diffusion between water vapour and air was considered. Since, the model is fundamental physics based it can be applied to any drying applications and other food processing where heat and mass transfer takes place in porous media with significant evaporation and other phase change.
Resumo:
Oxygen enriched, porous fuel injection has been numerically investigated in this study with the aim of understanding mixing and combustion enhancements achievable in a viable scramjet engine. Four injection configurations were studied: a fuel only case, a pre-mixed case and two staged injection cases where fuel and oxidiser were injected independently. All simulations were performed on a flight scale vehicle at Mach 8 flow conditions. Results show that the addition of oxygen with the fuel increases the mixing efficiency of the engine, however, is less sensitive to the method of oxygen addition: premixed versus staged. When the fuel-oxidiser-air mixture was allowed to combust, the method of additional oxygen delivery had a more significant impact. For pre-mixed fuel and oxidiser, the engine was found to choke, whereas in contrast, in the staged enrichment cases the engine failed to ignite. This result indicates that there exists an optimised configuration between pre-mixed and staged oxygen enrichment which results in a started, and combusting engine.
Resumo:
To reduce the natural convection heat loss from enclosures many researchers used convection suppression devices in the past. In this study a single baffle is used under the top tip to investigate numerically the natural convection heat loss in an attic shaped enclosure which is a cost effective approach. The case considered here is one inclined wall of the enclosure is uniformly heated while the other inclined wall is uniformly cooled with adiabatic bottom wall. The finite volume method has been used to discretize the governing equations, with the QUICK scheme approximating the advection term. The diffusion terms are discretized using central-differencing with second order accuracy. A wide range of governing parameters are studied (Rayleigh number, aspect ratio, baffle length etc.). It is observed that the heat transfer due to natural convection in the enclosure reduces when the baffle length is increased. Effects of other parameters on heat transfer and flow field are described in this study.
Resumo:
A numerical study is carried out to investigate the transition from laminar to chaos in mixed convection heat transfer inside a lid-driven trapezoidal enclosure. In this study, the top wall is considered as isothermal cold surface, which is moving in its own plane at a constant speed, and a constant high temperature is provided at the bottom surface. The enclosure is assumed to be filled with water-Al2O3 nanofluid. The governing Navier–Stokes and thermal energy equations are expressed in non-dimensional forms and are solved using Galerkin finite element method. Attention is paid in the present study on the pure mixed convection regime at Richandson number, Ri = 1. The numerical simulations are carried out over a wide range of Reynolds (0.1 ≤ Re ≤ 103) and Grashof (0.01 ≤ Gr ≤ 106) numbers. Effects of the presence of nanofluid on the characteristics of mixed convection heat transfer are also explored. The average Nusselt numbers of the heated wall are computed to demonstrate the influence of flow parameter variations on heat transfer. The corresponding change of flow and thermal fields is visualized from the streamline and the isotherm contour plots.
Resumo:
Numerical results are presented to investigate the performance of a partly-filled porous heat exchanger for waste heat recovery units. A parametric study was conducted to investigate the effects of inlet velocity and porous block height on the pressure drop of the heat exchanger. The focus of this work is on modelling the interface of a porous and non-porous region. As such, numerical simulation of the problem is conducted along with hot-wire measurements to better understand the physics of the problem. Results from the two sources are then compared to existing theoretical predictions available in the literature which are unable to predict the existence of two separation regions before and after the porous block. More interestingly, a non-uniform interface velocity was observed along the streamwise direction based on both numerical and experimental data.
Resumo:
This paper offers an uncertainty quantification (UQ) study applied to the performance analysis of the ERCOFTAC conical diffuser. A deterministic CFD solver is coupled with a non-statistical generalised Polynomial Chaos(gPC)representation based on a pseudo-spectral projection method. Such approach has the advantage to not require any modification of the CFD code for the propagation of random disturbances in the aerodynamic field. The stochactic results highlihgt the importance of the inlet velocity uncertainties on the pressure recovery both alone and when coupled with a second uncertain variable. From a theoretical point of view, we investigate the possibility to build our gPC representation on arbitray grid, thus increasing the flexibility of the stochastic framework.
Resumo:
In an estuary, mixing and dispersion are the result of the combination of large scale advection and small scale turbulence which are both complex to estimate. A field study was conducted in a small sub-tropical estuary in which high frequency (50 Hz) turbulent data were recorded continuously for about 48 hours. A triple decomposition technique was introduced to isolate the contributions of tides, resonance and turbulence in the flow field. A striking feature of the data set was the slow fluctuations which exhibited large amplitudes up to 50% the tidal amplitude under neap tide conditions. The triple decomposition technique allowed a characterisation of broader temporal scales of high frequency fluctuation data sampled during a number of full tidal cycles.
Resumo:
An effective means of facilitating DNA vaccine delivery to antigen presenting cells is through biodegradable microspheres. Microspheres offer distinct advantages over other delivery technologies by providing release of DNA vaccine in its bioactive form in a controlled fashion. In this study, biodegradable poly(D,L-lactide-coglycolide) (PLGA) microspheres containing polyethylenimine (PEI) condensed plasmid DNA (pDNA) were prepared using a 40 kHz ultrasonic atomization system. Process synthesis parameters, which are important to the scale-up of microspheres that are suitable for nasal delivery (i.e., less than 20 μm), were studied. These parameters include polymer concentration; feed flowrate; volumetric ratio of polymer and pDNA-PEI (plasmid DNA-polyethylenimine) complexes; and nitrogen to phosphorous (N/P) ratio. PDNA encapsulation efficiencies were predominantly in the range 82-96%, and the mean sizes of the particle were between 6 and 15 μm. The ultrasonic synthesis method was shown to have excellent reproducibility. PEI affected morphology of the microspheres, as it induced the formation of porous particles that accelerate the release rate of pDNA. The PLGA microspheres displayed an in vitro release of pDNA of 95-99% within 30 days and demonstrated zero order release kinetics without an initial spike of pDNA. Agarose electrophoresis confirmed conservation of the supercoiled form of pDNA throughout the synthesis and in vitro release stages. It was concluded that ultrasonic atomization is an efficient technique to overcome the key obstacles in scaling-up the manufacture of encapsulated vaccine for clinical trials and ultimately, commercial applications.
Resumo:
This paper reports on the experimental testing of oxygen-enriched porous fuel injection in a scramjet engine. Fuel was injected via inlet mounted, oxide-based ceramic matrix composite (CMC) injectors on both flow path surfaces that covered a total of 9.2 % of the intake surface area. All experiments were performed at an enthalpy of 3.93−4.25±3.2% MJ kg−1, flight Mach number 9.2–9.6 and an equivalence ratio of 0.493±3%. At this condition, the engine was shown to be on the verge of achieving appreciable combustion. Oxygen was then added to the fuel prior to injection such that two distinct enrichment levels were achieved. Combustion was found to increase, by as much as 40 % in terms of combustion-induced pressure rise, over the fuel-only case with increasing oxygen enrichment. Further, the onset of combustion was found to move upstream with increasing levels of oxygen enrichment. Thrust, both uninstalled and specific, and specific impulse were found to be improved with oxygen enrichment. Enhanced fuel–air mixing due to the pre-mixing of oxygen with the fuel together with the porous fuel injection are believed to be the main contributors to the observed enhanced performance of the tested engine.