141 resultados para Direct manipulation
Resumo:
Each financial year concessions, benefits and incentives are delivered to taxpayers via the tax system. These concessions, benefits and incentives, referred to as tax expenditure, differ from direct expenditure because of the recurring fiscal impact without regular scrutiny through the federal budget process. There are approximately 270 different tax expenditures existing within the current tax regime with total measured tax expenditures in the 2005-06 financial year estimated to be around $42.1 billion, increasing to $52.7 billion by 2009-10. Each year, new tax expenditures are introduced, while existing tax expenditures are modified and deleted. In recognition of some of the problems associated with tax expenditure, a Tax Expenditure Statement, as required by the Charter of Budget Honesty Act 1988, is produced annually by the Australian Federal Treasury. The Statement details the various expenditures and measures in the form of concessions, benefits and incentives provided to taxpayers by the Australian Government and calculates the tax expenditure in terms of revenue forgone. A similar approach to reporting tax expenditure, with such a report being a legal requirement, is followed by most OECD countries. The current Tax Expenditure Statement lists 270 tax expenditures and where it is able to, reports on the estimated pecuniary value of those expenditures. Apart from the annual Tax Expenditure Statement, there is very little other scrutiny of Australia’s Federal tax expenditure program. While there has been various academic analysis of tax expenditure in Australia, when compared to the North American literature, it is suggested that the Australian literature is still in its infancy. In fact, one academic author who has contributed to tax expenditure analysis recently noted that there is ‘remarkably little secondary literature which deals at any length with tax expenditures in the Australian context.’ Given this perceived gap in the secondary literature, this paper examines fundamental concept of tax expenditure and considers the role it plays in to the current tax regime as a whole, along with the effects of the introduction of new tax expenditures. In doing so, tax expenditure is contrasted with direct expenditure. An analysis of tax expenditure versus direct expenditure is already a sophisticated and comprehensive body of work stemming from the US over the last three decades. As such, the title of this paper is rather misleading. However, given the lack of analysis in Australia, it is appropriate that this paper undertakes a consideration of tax expenditure versus direct expenditure in an Australian context. Given this proposition, rather than purport to undertake a comprehensive analysis of tax expenditure which has already been done, this paper discusses the substantive considerations of any such analysis to enable further investigation into the tax expenditure regime both as a whole and into individual tax expenditure initiatives. While none of the propositions in this paper are new in a ‘tax expenditure analysis’ sense, this debate is a relatively new contribution to the Australian literature on the tax policy. Before the issues relating to tax expenditure can be determined, it is necessary to consider what is meant by ‘tax expenditure’. As such, part two if this paper defines ‘tax expenditure’. Part three determines the framework in which tax expenditure can be analysed. It is suggested that an analysis of tax expenditure must be evaluated within the framework of the design criteria of an income tax system with the key features of equity, efficiency, and simplicity. Tax expenditure analysis can then be applied to deviations from the ideal tax base. Once it is established what is meant by tax expenditure and the framework for evaluation is determined, it is possible to establish the substantive issues to be evaluated. This paper suggests that there are four broad areas worthy of investigation; economic efficiency, administrative efficiency, whether tax expenditure initiatives achieve their policy intent, and the impact on stakeholders. Given these areas of investigation, part four of this paper considers the issues relating to the economic efficiency of the tax expenditure regime, in particular, the effect on resource allocation, incentives for taxpayer behaviour and distortions created by tax expenditures. Part five examines the notion of administrative efficiency in light of the fact that most tax expenditures could simply be delivered as direct expenditures. Part six explores the notion of policy intent and considers the two questions that need to be asked; whether any tax expenditure initiative reaches its target group and whether the financial incentives are appropriate. Part seven examines the impact on stakeholders. Finally, part eight considers the future of tax expenditure analysis in Australia.
Resumo:
This letter presents a technique to assess the overall network performance of sampled value process buses based on IEC 61850-9-2 using measurements from a single location in the network. The method is based upon the use of Ethernet cards with externally synchronized time stamping, and characteristics of the process bus protocol. The application and utility of the method is demonstrated by measuring latency introduced by Ethernet switches. Network latency can be measured from a single set of captures, rather than comparing source and destination captures. Absolute latency measures will greatly assist the design testing, commissioning and maintenance of these critical data networks.
Resumo:
Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.
Resumo:
Environmental manipulation removes students from their everyday worlds to unfamiliar worlds, to facil- itate learning. This article reports that this strategy was effective when applied in a university design unit, using the tactic of immersion in the Second Life online virtual environment. The objective was for teams of stu- dents each to design a series of modules for an orbiting space station using supplied data. The changed and futuristic environment led the students to an important but previously unconsidered design decision which they were able to address in novel ways because of, rather than in spite of, the Second Life immersion.
Resumo:
Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
A paradigm shift is taking place in orthopaedic and reconstructive surgery. This transition from using medical devices and tissue grafts towards the utilization of a tissue engineering approach combines biodegradable scaffolds with cells and/or biological molecules in order to repair and/or regenerate tissues. One of the potential benefits offered by solid freeform fabrication (SFF) technologies is the ability to create such biodegradable scaffolds with highly reproducible architecture and compositional variation across the entire scaffold due to their tightly controlled computer-driven fabrication. Many of these biologically activated materials can induce bone formation at ectopic and orthotopic sites, but they have not yet gained widespread use due to several continuing limitations, including poor mechanical properties, difficulties in intraoperative handling, lack of porosity suitable for cellular and vascular infiltration, and suboptimal degradation characteristics. In this chapter, we define scaffold properties and attempt to provide some broad criteria and constraints for scaffold design and fabrication in combination with growth factors for bone engineering applications. Lastly, we comment on the current and future developments in the field, such as the functionalization of novel composite scaffolds with combinations of growth factors designed to promote cell attachment, cell survival, vascular ingrowth, and osteoinduction.
Resumo:
This paper presents a model for generating a MAC tag by injecting the input message directly into the internal state of a nonlinear filter generator. This model generalises a similar model for unkeyed hash functions proposed by Nakano et al. We develop a matrix representation for the accumulation phase of our model and use it to analyse the security of the model against man-in-the-middle forgery attacks based on collisions in the final register contents. The results of this analysis show that some conclusions of Nakano et al regarding the security of their model are incorrect. We also use our results to comment on several recent MAC proposals which can be considered as instances of our model and specify choices of options within the model which should prevent the type of forgery discussed here. In particular, suitable initialisation of the register and active use of a secure nonlinear filter will prevent an attacker from finding a collision in the final register contents which could result in a forged MAC.
Early evidence for direct and indirect effects of the infant rotavirus vaccine program in Queensland
Resumo:
Objective: To assess the impact of introducing a publicly funded infant rotavirus vaccination program on disease notifications and on laboratory testing and results. Design and setting: Retrospective analysis of routinely collected data (rotavirus notifications [2006–2008] and laboratory rotavirus testing data from Queensland Health laboratories [2000–2008]) to monitor rotavirus trends before and after the introduction of a publicly funded infant rotavirus vaccination program in Queensland in July 2007. Main outcome measures: Age group-specific rotavirus notification trends; number of rotavirus tests performed and the proportion positive. Results: In the less than 2 years age group, rotavirus notifications declined by 53% (2007) and 65% (2008); the number of laboratory tests performed declined by 3% (2007) and 15% (2008); and the proportion of tests positive declined by 45% (2007) and 43% (2008) compared with data collected before introduction of the vaccination program. An indirect effect of infant vaccination was seen: notifications and the proportion of tests positive for rotavirus declined in older age groups as well. Conclusions: The publicly funded rotavirus vaccination program in Queensland is having an early impact, direct and indirect, on rotavirus disease as assessed using routinely collected data. Further observational studies are required to assess vaccine effectiveness. Parents and immunisation providers should ensure that all Australian children receive the recommended rotavirus vaccine doses in the required timeframe.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
This study examined the effects of personal and social resources, coping strategies and appraised stress on employees' levels of anxiety and depression. In relation to the effects of resources and coping strategies, two different models were tested. The main effects model proposes that, irrespective of the level of stress, coping resources and coping strategies have direct effects on well-being. In contrast, the buffering model predicts that the buffering effects of coping resources and strategies are only evident at high levels of stress. One hundred lawyers completed a structured self-administered questionnaire that measured their personal and social resources, use of problem-focused and emotion-focused coping strategies, and appraisals of the stressfulness of the situation. Results revealed generally strong support for the main effects model in the prediction of employee levels of anxiety and depression. Lower levels of anxiety were linked to judgements of lower levels of organizational change, greater self-confidence, greater internality of control beliefs and less use of emotion-focused coping strategies. Lower levels of depression in employees were also linked to judgements of lower levels of organizational change, greater use of resources and less appraised stress. There was only limited support for the buffering effects model. Due to the small size of the sample, the findings need to be explored further in other contexts.
Resumo:
This paper presents the direct strength method (DSM) equations for cold-formed steel beams subject to shear. Light gauge cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold-formed lipped channel beams (LCB), LiteSteel beams (LSB) and hollow flange beams (HFB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. For the shear design of cold-formed web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the flange and web elements and ignore the post-buckling strength. Hence experimental and numerical studies were conducted to investigate the shear behaviour and strength of LSBs, LCBs and HFBs. New direct strength method (DSM) based design equations were proposed to determine the ultimate shear capacities of cold-formed steel beams. An improved equation for the higher elastic shear buckling coefficient of cold-formed steel beams was proposed based on finite element analysis results and included in the DSM design equations. A new post-buckling coefficient was also introduced in the DSM equation to include the available post-buckling strength of cold-formed steel beams.
Resumo:
Melt electrospinning in a direct writing mode is a recent additive manufacturing approach to fabricate porous scaffolds for tissue engineering applications. In this study, we describe porous and cell-invasive poly (ε-caprolactone) scaffolds fabricated by combining melt electrospinning and a programmable x–y stage. Fibers were 7.5 ± 1.6 µm in diameter and separated by interfiber distances ranging from 8 to 133 µm, with an average of 46 ± 22 µm. Micro-computed tomography revealed that the resulting scaffolds had a highly porous (87%), three-dimensional structure. Due to the high porosity and interconnectivity of the scaffolds, a top-seeding method was adequate to achieve fibroblast penetration, with cells present throughout and underneath the scaffold. This was confirmed histologically, whereby a 3D fibroblast-scaffold construct with full cellular penetration was produced after 14 days in vitro. Immunohistochemistry was used to confirm the presence and even distribution of the key dermal extracellular matrix proteins, collagen type I and fibronectin. These results show that melt electrospinning in a direct writing mode can produce cell invasive scaffolds, using simple top-seeding approaches.