97 resultados para Differenzial Imaging, Principal Component Analysis, esopianeti, SPHERE, IFS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is possible for the visual attention characteristics of a person to be exploited as a biometric for authentication or identification of individual viewers. The visual attention characteristics of a person can be easily monitored by tracking the gaze of a viewer during the presentation of a known or unknown visual scene. The positions and sequences of gaze locations during viewing may be determined by overt (conscious) or covert (sub-conscious) viewing behaviour. This paper presents a method to authenticate individuals using their covert viewing behaviour, thus yielding a unique behavioural biometric. A method to quantify the spatial and temporal patterns established by the viewer for their covert behaviour is proposed utilsing a principal component analysis technique called `eigenGaze'. Experimental results suggest that it is possible to capture the unique visual attention characteristics of a person to provide a simple behavioural biometric.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human hair fibres are ubiquitous in nature and are found frequently at crime scenes often as a result of exchange between the perpetrator, victim and/or the surroundings according to Locard's Principle. Therefore, hair fibre evidence can provide important information for crime investigation. For human hair evidence, the current forensic methods of analysis rely on comparisons of either hair morphology by microscopic examination or nuclear and mitochondrial DNA analyses. Unfortunately in some instances the utilisation of microscopy and DNA analyses are difficult and often not feasible. This dissertation is arguably the first comprehensive investigation aimed to compare, classify and identify the single human scalp hair fibres with the aid of FTIR-ATR spectroscopy in a forensic context. Spectra were collected from the hair of 66 subjects of Asian, Caucasian and African (i.e. African-type). The fibres ranged from untreated to variously mildly and heavily cosmetically treated hairs. The collected spectra reflected the physical and chemical nature of a hair from the near-surface particularly, the cuticle layer. In total, 550 spectra were acquired and processed to construct a relatively large database. To assist with the interpretation of the complex spectra from various types of human hair, Derivative Spectroscopy and Chemometric methods such as Principal Component Analysis (PCA), Fuzzy Clustering (FC) and Multi-Criteria Decision Making (MCDM) program; Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA); were utilised. FTIR-ATR spectroscopy had two important advantages over to previous methods: (i) sample throughput and spectral collection were significantly improved (no physical flattening or microscope manipulations), and (ii) given the recent advances in FTIR-ATR instrument portability, there is real potential to transfer this work.s findings seamlessly to on-field applications. The "raw" spectra, spectral subtractions and second derivative spectra were compared to demonstrate the subtle differences in human hair. SEM images were used as corroborative evidence to demonstrate the surface topography of hair. It indicated that the condition of the cuticle surface could be of three types: untreated, mildly treated and treated hair. Extensive studies of potential spectral band regions responsible for matching and discrimination of various types of hair samples suggested the 1690-1500 cm-1 IR spectral region was to be preferred in comparison with the commonly used 1750-800 cm-1. The principal reason was the presence of the highly variable spectral profiles of cystine oxidation products (1200-1000 cm-1), which contributed significantly to spectral scatter and hence, poor hair sample matching. In the preferred 1690-1500 cm-1 region, conformational changes in the keratin protein attributed to the α-helical to β-sheet transitions in the Amide I and Amide II vibrations and played a significant role in matching and discrimination of the spectra and hence, the hair fibre samples. For gender comparison, the Amide II band is significant for differentiation. The results illustrated that the male hair spectra exhibit a more intense β-sheet vibration in the Amide II band at approximately 1511 cm-1 whilst the female hair spectra displayed more intense α-helical vibration at 1520-1515cm-1. In terms of chemical composition, female hair spectra exhibit greater intensity of the amino acid tryptophan (1554 cm-1), aspartic and glutamic acid (1577 cm-1). It was also observed that for the separation of samples based on racial differences, untreated Caucasian hair was discriminated from Asian hair as a result of having higher levels of the amino acid cystine and cysteic acid. However, when mildly or chemically treated, Asian and Caucasian hair fibres are similar, whereas African-type hair fibres are different. In terms of the investigation's novel contribution to the field of forensic science, it has allowed for the development of a novel, multifaceted, methodical protocol where previously none had existed. The protocol is a systematic method to rapidly investigate unknown or questioned single human hair FTIR-ATR spectra from different genders and racial origin, including fibres of different cosmetic treatments. Unknown or questioned spectra are first separated on the basis of chemical treatment i.e. untreated, mildly treated or chemically treated, genders, and racial origin i.e. Asian, Caucasian and African-type. The methodology has the potential to complement the current forensic analysis methods of fibre evidence (i.e. Microscopy and DNA), providing information on the morphological, genetic and structural levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: This paper reports a study designed to assess the psychometric properties (validity and reliability) of a Turkish version of the Australian Parents’ Fever Management Scale (PFMS). Background: Little is known about childhood fever management among Turkish parents. No scales to measure parents’ fever management practices in Turkey are available. Design: This is a methodological study. Methods: Eighty parents, of febrile children aged six months to five years, were randomly selected from the paedaitric hospital and two community family health centers in Sakarya, Turkey. The PFMS was back translated; language equivalence and content validity were validated. PFMS and socio-demographic data were collected in 2009. Means and standard deviations were calculated for interval level data and p values greater than 0.05 were considered statistically significant. Unrotated principal component analysis was used to determine construct validity and Cronbach’s coefficient alpha determined the internal consistency reliability. Results: The PFMS was psychometrically sound in this population. Construct validity, confirmed by confirmatory factor analysis [KMO 0.812, Bartlett’s Specificity (χ² = 182.799, df=28, P < 0·001)] revealed the Turkish version to be comprised of the eight original PFMS items. Internal consistency reliability coefficient was 0.80 and the scale’s total-item correlation coefficients ranged from 0.15 to 0.66 and were significant (p<0.001). Interestingly parents reported high scores on the PFMS 34.52±4.60 (range 8-40 with 40 indicating a high burden of care for febrile children). Conclusion: The PFMS was as psychometrically robust in a Turkish population as in an Australian population and is, therefore, a useful tool for health professionals to identify parents’ practices, provide targeted education thereby in reducing the unnecessary burden of care they place on themselves when caring for a febrile child. Relevance to clinical practice. Testing in different populations, cultures and healthcare systems will further assist in reporting the PFMS usefulness in clinical practice and research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel technique for the tracking of moving lips for the purpose of speaker identification. In our system, a model of the lip contour is formed directly from chromatic information in the lip region. Iterative refinement of contour point estimates is not required. Colour features are extracted from the lips via concatenated profiles taken around the lip contour. Reduction of order in lip features is obtained via principal component analysis (PCA) followed by linear discriminant analysis (LDA). Statistical speaker models are built from the lip features based on the Gaussian mixture model (GMM). Identification experiments performed on the M2VTS1 database, show encouraging results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, few attempts have been made to explore the structure damage with frequency response functions (FRFs). This paper illustrates the damage identification and condition assessment of a beam structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). In practice, usage of all available FRF data as an input to artificial neural networks makes the training and convergence impossible. Therefore one of the data reduction techniques Principal Component Analysis (PCA) is introduced in the algorithm. In the proposed procedure, a large set of FRFs are divided into sub-sets in order to find the damage indices for different frequency points of different damage scenarios. The basic idea of this method is to establish features of damaged structure using FRFs from different measurement points of different sub-sets of intact structure. Then using these features, damage indices of different damage cases of the structure are identified after reconstructing of available FRF data using PCA. The obtained damage indices corresponding to different damage locations and severities are introduced as input variable to developed artificial neural networks. Finally, the effectiveness of the proposed method is illustrated and validated by using the finite element modal of a beam structure. The illustrated results show that the PCA based damage index is suitable and effective for structural damage detection and condition assessment of building structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compressive Sensing (CS) is a popular signal processing technique, that can exactly reconstruct a signal given a small number of random projections of the original signal, provided that the signal is sufficiently sparse. We demonstrate the applicability of CS in the field of gait recognition as a very effective dimensionality reduction technique, using the gait energy image (GEI) as the feature extraction process. We compare the CS based approach to the principal component analysis (PCA) and show that the proposed method outperforms this baseline, particularly under situations where there are appearance changes in the subject. Applying CS to the gait features also avoids the need to train the models, by using a generalised random projection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predicted changes in rainfall characteristics due to climate change could adversely affect stormwater quality in highly urbanised coastal areas throughout the world. This in turn will exert a significant influence on the discharge of pollutants to estuarine and marine waters. Hence, an in-depth analysis of the effects of such changes on the wash-off of volatile organic compounds (VOCs) from urban roads in the Gold Coast region in Australia was undertaken. The rainfall characteristics were simulated using a rainfall simulator. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the VOC wash-off under climate change. It was found that low, low to moderate and high rain events due to climate change will affect the wash-off of toluene, ethylbenzene, meta-xylene, para-xylene and ortho-xylene from urban roads in Gold Coast. Total organic carbon (TOC) was identified as predominant carrier of toluene, meta-xylene and para-xylene in <1µm to 150µm fractions and for ethylbenzene in 150µm to >300µm fractions under such dominant rain events due to climate change. However, ortho-xylene did not show such affinity towards either TOC or TSS (total suspended solids) under the simulated climatic conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photochemistry has made significant contributions to our understanding of many important natural processes as well as the scientific discoveries of the man-made world. The measurements from such studies are often complex and may require advanced data interpretation with the use of multivariate or chemometrics methods. In general, such methods have been applied successfully for data display, classification, multivariate curve resolution and prediction in analytical chemistry, environmental chemistry, engineering, medical research and industry. However, in photochemistry, by comparison, applications of such multivariate approaches were found to be less frequent although a variety of methods have been used, especially with spectroscopic photochemical applications. The methods include Principal Component Analysis (PCA; data display), Partial Least Squares (PLS; prediction), Artificial Neural Networks (ANN; prediction) and several models for multivariate curve resolution related to Parallel Factor Analysis (PARAFAC; decomposition of complex responses). Applications of such methods are discussed in this overview and typical examples include photodegradation of herbicides, prediction of antibiotics in human fluids (fluorescence spectroscopy), non-destructive in- and on-line monitoring (near infrared spectroscopy) and fast-time resolution of spectroscopic signals from photochemical reactions. It is also quite clear from the literature that the scope of spectroscopic photochemistry was enhanced by the application of chemometrics. To highlight and encourage further applications of chemometrics in photochemistry, several additional chemometrics approaches are discussed using data collected by the authors. The use of a PCA biplot is illustrated with an analysis of a matrix containing data on the performance of photocatalysts developed for water splitting and hydrogen production. In addition, the applications of the Multi-Criteria Decision Making (MCDM) ranking methods and Fuzzy Clustering are demonstrated with an analysis of water quality data matrix. Other examples of topics include the application of simultaneous kinetic spectroscopic methods for prediction of pesticides, and the use of response fingerprinting approach for classification of medicinal preparations. In general, the overview endeavours to emphasise the advantages of chemometrics' interpretation of multivariate photochemical data, and an Appendix of references and summaries of common and less usual chemometrics methods noted in this work, is provided. Crown Copyright © 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper illustrates the damage identification and condition assessment of a three story bookshelf structure using a new frequency response functions (FRFs) based damage index and Artificial Neural Networks (ANNs). A major obstacle of using measured frequency response function data is a large size input variables to ANNs. This problem is overcome by applying a data reduction technique called principal component analysis (PCA). In the proposed procedure, ANNs with their powerful pattern recognition and classification ability were used to extract damage information such as damage locations and severities from measured FRFs. Therefore, simple neural network models are developed, trained by Back Propagation (BP), to associate the FRFs with the damage or undamaged locations and severity of the damage of the structure. Finally, the effectiveness of the proposed method is illustrated and validated by using the real data provided by the Los Alamos National Laboratory, USA. The illustrated results show that the PCA based artificial Neural Network method is suitable and effective for damage identification and condition assessment of building structures. In addition, it is clearly demonstrated that the accuracy of proposed damage detection method can also be improved by increasing number of baseline datasets and number of principal components of the baseline dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damage detection in structures has become increasingly important in recent years. While a number of damage detection and localization methods have been proposed, very few attempts have been made to explore the structure damage with noise polluted data which is unavoidable effect in real world. The measurement data are contaminated by noise because of test environment as well as electronic devices and this noise tend to give error results with structural damage identification methods. Therefore it is important to investigate a method which can perform better with noise polluted data. This paper introduces a new damage index using principal component analysis (PCA) for damage detection of building structures being able to accept noise polluted frequency response functions (FRFs) as input. The FRF data are obtained from the function datagen of MATLAB program which is available on the web site of the IASC-ASCE (International Association for Structural Control– American Society of Civil Engineers) Structural Health Monitoring (SHM) Task Group. The proposed method involves a five-stage process: calculation of FRFs, calculation of damage index values using proposed algorithm, development of the artificial neural networks and introducing damage indices as input parameters and damage detection of the structure. This paper briefly describes the methodology and the results obtained in detecting damage in all six cases of the benchmark study with different noise levels. The proposed method is applied to a benchmark problem sponsored by the IASC-ASCE Task Group on Structural Health Monitoring, which was developed in order to facilitate the comparison of various damage identification methods. The illustrated results show that the PCA-based algorithm is effective for structural health monitoring with noise polluted FRFs which is of common occurrence when dealing with industrial structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sibelco Australia Limited (SAL), a mineral sand mining operation on North Stradbroke Island, undertakes progressive rehabilitation of mined areas. Initial investigations have found that some areas at SAL’s Yarraman Mine have failed to redevelop towards approved criteria. This study, undertaken in 2010, examined ground cover rehabilitation of different aged plots at the Yarraman Mine to determine if there was a relationship between key soil and vegetation attributes. Vegetation and soil data were collected from five plots rehabilitated in 2003, 2006, 2008, 2009 and 2010, and one unmined plot. Cluster (PATN) analysis revealed that vegetation species composition, species richness and ground cover differed between plots. Principal component analysis (PCA) extracted ten soil attributes that were then correlated with vegetation data. The attributes extracted by PCA, in order of most common variance, were: water content, pH, terrolas depth, elevation, slope angle, leaf litter depth, total organic carbon, and counts of macrofauna, fungi and bacteria. All extracted attributes differed between plots, and all except bacteria correlated with at least one vegetation attribute. Water content and pH correlated most strongly with vegetation cover suggesting an increase in soil moisture and a reduction in pH are required in order to improve vegetation rehabilitation at Yarraman Mine. Further study is recommended to confirm these results using controlled experiments and to test potential solutions, such as organic amendments.