242 resultados para Diabetes - Retinal lesions
Resumo:
Background By 2025, it is estimated that approximately 1.8 million Australian adults (approximately 8.4% of the adult population) will have diabetes, with the majority having type 2 diabetes. Weight management via improved physical activity and diet is the cornerstone of type 2 diabetes management. However, the majority of weight loss trials in diabetes have evaluated short-term, intensive clinic-based interventions that, while producing short-term outcomes, have failed to address issues of maintenance and broad population reach. Telephone-delivered interventions have the potential to address these gaps. Methods/Design Using a two-arm randomised controlled design, this study will evaluate an 18-month, telephone-delivered, behavioural weight loss intervention focussing on physical activity, diet and behavioural therapy, versus usual care, with follow-up at 24 months. Three-hundred adult participants, aged 20-75 years, with type 2 diabetes, will be recruited from 10 general practices via electronic medical records search. The Social-Cognitive Theory driven intervention involves a six-month intensive phase (4 weekly calls and 11 fortnightly calls) and a 12-month maintenance phase (one call per month). Primary outcomes, assessed at 6, 18 and 24 months, are: weight loss, physical activity, and glycaemic control (HbA1c), with weight loss and physical activity also measured at 12 months. Incremental cost-effectiveness will also be examined. Study recruitment began in February 2009, with final data collection expected by February 2013. Discussion This is the first study to evaluate the telephone as the primary method of delivering a behavioural weight loss intervention in type 2 diabetes. The evaluation of maintenance outcomes (6 months following the end of intervention), the use of accelerometers to objectively measure physical activity, and the inclusion of a cost-effectiveness analysis will advance the science of broad reach approaches to weight control and health behaviour change, and will build the evidence base needed to advocate for the translation of this work into population health practice.
Resumo:
Intrinsically photosensitive retinal ganglion cells (ipRGCs) in the eye transmit the environmental light level, projecting to the suprachiasmatic nucleus (SCN) (Berson, Dunn & Takao, 2002; Hattar, Liao, Takao, Berson & Yau, 2002), the location of the circadian biological clock, and the olivary pretectal nucleus (OPN) of the pretectum, the start of the pupil reflex pathway (Hattar, Liao, Takao, Berson & Yau, 2002; Dacey, Liao, Peterson, Robinson, Smith, Pokorny, Yau & Gamlin, 2005). The SCN synchronizes the circadian rhythm, a cycle of biological processes coordinated to the solar day, and drives the sleep/wake cycle by controlling the release of melatonin from the pineal gland (Claustrat, Brun & Chazot, 2005). Encoded photic input from ipRGCs to the OPN also contributes to the pupil light reflex (PLR), the constriction and recovery of the pupil in response to light. IpRGCs control the post-illumination component of the PLR, the partial pupil constriction maintained for > 30 sec after a stimulus offset (Gamlin, McDougal, Pokorny, Smith, Yau & Dacey, 2007; Kankipati, Girkin & Gamlin, 2010; Markwell, Feigl & Zele, 2010). It is unknown if intrinsic ipRGC and cone-mediated inputs to ipRGCs show circadian variation in their photon-counting activity under constant illumination. If ipRGCs demonstrate circadian variation of the pupil response under constant illumination in vivo, when in vitro ipRGC activity does not (Weng, Wong & Berson, 2009), this would support central control of the ipRGC circadian activity. A preliminary experiment was conducted to determine the spectral sensitivity of the ipRGC post-illumination pupil response under the experimental conditions, confirming the successful isolation of the ipRGC response (Gamlin, et al., 2007) for the circadian experiment. In this main experiment, we demonstrate that ipRGC photon-counting activity has a circadian rhythm under constant experimental conditions, while direct rod and cone contributions to the PLR do not. Intrinsic ipRGC contributions to the post-illumination pupil response decreased 2:46 h prior to melatonin onset for our group model, with the peak ipRGC attenuation occurring 1:25 h after melatonin onset. Our results suggest a centrally controlled evening decrease in ipRGC activity, independent of environmental light, which is temporally synchronized (demonstrates a temporal phase-advanced relationship) to the SCN mediated release of melatonin. In the future the ipRGC post-illumination pupil response could be developed as a fast, non-invasive measure of circadian rhythm. This study establishes a basis for future investigation of cortical feedback mechanisms that modulate ipRGC activity.