161 resultados para Design structure matrix
Resumo:
Online learning has been recognised as an effective pedagogical method and tool, and is broadly integrated into various types of teaching and learning strategies in higher education. In practice, the use of Virtual Learning Environment (VLE) in higher education has become an integral strategy for quality education. The field of design education however has not been researched extensively in regard to online learning, delivery and evaluation. This paper discusses design education from an online learning perspective. It proposes an integrated framework with three key components for online learning via VLE including an interactive delivery structure, communication channels, and learning evaluation. Additionally, the paper describes and evaluates how VLE sites for two design units were built based on an integrated framework and student learning experiences. The results indicate that online design education should be integrated with various educational values and functional features in a systematic manner, and requires designing learning evaluation protocols as part of learning activities and communicative forms within online-based learning sites.
Resumo:
It is predicted that with increased life expectancy in the developed world, there will be a greater demand for synthetic materials to repair or regenerate lost, injured or diseased bone (Hench & Thompson 2010). There are still few synthetic materials having true bone inductivity, which limits their application for bone regeneration, especially in large-size bone defects. To solve this problem, growth factors, such as bone morphogenetic proteins (BMPs), have been incorporated into synthetic materials in order to stimulate de novo bone formation in the center of large-size bone defects. The greatest obstacle with this approach is that the rapid diffusion of the protein from the carrier material, leading to a precipitous loss of bioactivity; the result is often insufficient local induction or failure of bone regeneration (Wei et al. 2007). It is critical that the protein is loaded in the carrier material in conditions which maintains its bioactivity (van de Manakker et al. 2009). For this reason, the efficient loading and controlled release of a protein from a synthetic material has remained a significant challenge. The use of microspheres as protein/drug carriers has received considerable attention in recent years (Lee et al. 2010; Pareta & Edirisinghe 2006; Wu & Zreiqat 2010). Compared to macroporous block scaffolds, the chief advantage of microspheres is their superior protein-delivery properties and ability to fill bone defects with irregular and complex shapes and sizes. Upon implantation, the microspheres are easily conformed to the irregular implant site, and the interstices between the particles provide space for both tissue and vascular ingrowth, which are important for effective and functional bone regeneration (Hsu et al. 1999). Alginates are natural polysaccharides and their production does not have the implicit risk of contamination with allo or xeno-proteins or viruses (Xie et al. 2010). Because alginate is generally cytocompatible, it has been used extensively in medicine, including cell therapy and tissue engineering applications (Tampieri et al. 2005; Xie et al. 2010; Xu et al. 2007). Calcium cross-linked alginate hydrogel is considered a promising material as a delivery matrix for drugs and proteins, since its gel microspheres form readily in aqueous solutions at room temperature, eliminating the need for harsh organic solvents, thereby maintaining the bioactivity of proteins in the process of loading into the microspheres (Jay & Saltzman 2009; Kikuchi et al. 1999). In addition, calcium cross-linked alginate hydrogel is degradable under physiological conditions (Kibat PG et al. 1990; Park K et al. 1993), which makes alginate stand out as an attractive candidate material for the protein carrier and bone regeneration (Hosoya et al. 2004; Matsuno et al. 2008; Turco et al. 2009). However, the major disadvantages of alginate microspheres is their low loading efficiency and also rapid release of proteins due to the mesh-like networks of the gel (Halder et al. 2005). Previous studies have shown that a core-shell structure in drug/protein carriers can overcome the issues of limited loading efficiencies and rapid release of drug or protein (Chang et al. 2010; Molvinger et al. 2004; Soppimath et al. 2007). We therefore hypothesized that introducing a core-shell structure into the alginate microspheres could solve the shortcomings of the pure alginate. Calcium silicate (CS) has been tested as a biodegradable biomaterial for bone tissue regeneration. CS is capable of inducing bone-like apatite formation in simulated body fluid (SBF) and its apatite-formation rate in SBF is faster than that of Bioglass® and A-W glass-ceramics (De Aza et al. 2000; Siriphannon et al. 2002). Titanium alloys plasma-spray coated with CS have excellent in vivo bioactivity (Xue et al. 2005) and porous CS scaffolds have enhanced in vivo bone formation ability compared to porous β-tricalcium phosphate ceramics (Xu et al. 2008). In light of the many advantages of this material, we decided to prepare CS/alginate composite microspheres by combining a CS shell with an alginate core to improve their protein delivery and mineralization for potential protein delivery and bone repair applications
Resumo:
Chondrocyte density in articular cartilage is known to change with the development and growth of the tissue and may play an important role in the formation of a functional extracellular matrix (ECM). The objective of this study was to determine how initial chondrocyte density in an alginate hydrogel affects the matrix composition, its distribution between the cell-associated (CM) and further removed matrix (FRM) fractions, and the tensile mechanical properties of the developing engineered cartilage. Alginate constructs containing primary bovine chondrocytes at densities of 0, 4, 16, and 64 million cells/ml were fabricated and cultured for 1 or 2 weeks, at which time structural, biochemical, and mechanical properties were analyzed. Both matrix content and distribution varied with the initial cell density. Increasing cell density resulted in an increasing content of collagen and sulfated-glycosaminoglycan (GAG) and an increasing proportion of these molecules localized in the CM. While the equilibrium tensile modulus of cell-free alginate did not change with time in culture, the constructs with highest cell density were 116% stiffer than cell-free controls after 2 weeks of culture. The equilibrium tensile modulus was positively correlated with total collagen (r2 = 0.47, p < 0.001) and GAG content (r2 = 0.68, p < 0.001), and these relationships were enhanced when analyzing only those matrix molecules in the CM fraction (r2 = 0.60 and 0.72 for collagen and GAG, respectively, each p < 0.001). Overall, the results of this study indicate that initial cell density has a considerable effect on the developing composition, structure, and function of alginate–chondrocyte constructs.
Resumo:
Without the virtually free services of nature like clean air and water, humans would not last long. Natural systems can be incorporated in existing urban structures or spaces to add public amenity, mitigate the heat island effect, reduce pollution, add oxygen, and ensure water, electricity and food security in urban areas. Th ere are many eco-solutions that could radically reduce resource consumption and pollution and even provide surplus ecosystem services in the built environment at little or no operational cost, if adequately supported by design. Th is paper is the fi rst of a two part paper that explains what eco-services are, then provides examples of how design can generate natural as well as social capital. Using examples of actual and notional solutions, both papers set out to challenge designers to ‘think again’, and invent ways of creating net positive environmental gains through built environment design.
Resumo:
Without the virtually free services of nature like clean air and water, humans would not last long. Natural systems can be incorporated in existing urban structures or spaces to add public amenity, mitigate the heat island eff ect, reduce pollution, add oxygen, and ensure water, electricity and food security in urban areas. Th ere are many eco-solutions that could radically reduce resource consumption and pollution and even provide surplus ecosystem services in the built environment at little or no operational cost, if adequately supported by design. Th is is the second part of a two part paper that explains what eco-services are, then provides examples of how design can generate natural as well as social capital. Using examples of actual and notional solutions, both papers set out to challenge designers to ‘think again’, and invent ways of creating net positive environmental gains through built environment design.
Resumo:
The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. The use of adaptive wing/aerofoil designs is being considered, as they are promising techniques in aeronautic/ aerospace since they can reduce aircraft emissions and improve aerodynamic performance of manned or unmanned aircraft. This paper investigates the robust design and optimization for one type of adaptive techniques: active flow control bump at transonic flow conditions on a natural laminar flow aerofoil. The concept of using shock control bump is to control supersonic flow on the suction/pressure side of natural laminar flow aerofoil that leads to delaying shock occurrence (weakening its strength) or boundary-layer separation. Such an active flow control technique reduces total drag at transonic speeds due to reduction of wave drag. The location of boundary-layer transition can influence the position and structure of the supersonic shock on the suction/pressure side of aerofoil. The boundarylayer transition position is considered as an uncertainty design parameter in aerodynamic design due to the many factors, such as surface contamination or surface erosion. This paper studies the shock-control-bump shape design optimization using robust evolutionary algorithms with uncertainty in boundary-layer transition locations. The optimization method is based on a canonical evolution strategy and incorporates the concepts of hierarchical topology, parallel computing, and asynchronous evaluation. Two test cases are conducted: the first test assumes the boundary-layer transition position is at 45% of chord from the leading edge, and the second test considers robust design optimization for the shock control bump at the variability of boundary-layer transition positions. The numerical result shows that the optimization method coupled to uncertainty design techniques produces Pareto optimal shock-control-bump shapes, which have low sensitivity and high aerodynamic performance while having significant total drag reduction.
Resumo:
Purpose The purpose of this paper is to explore the process, and analyse the implementation of constructability improvement and innovation result during the planning and design for sea water intake structure of fertilizer plant project. Design/methodology/approach The research methodology approach is case study method at project level. This constructability improvement process was investigated by using constructability implementation check lists, direct observation, documented lesson learned analysis and key personnel interviews. Findings The case study shows that the implementation of constructability during planning and design stage for this sea water intake structure has increased the project performance as well as improved the schedule by 5 months (14.21%) and reduced the project cost by 15.35%. Research limitations/implications This case study was limited to three (3) previous sea water intake projects as references and one (1) of new method sea water intake structure at fertilizer plant project. Practical implications A constructability improvement check list using theory and lesson learned for the specific construction project was documented. Originality/value The findings support the relevant study of constructability and provide specific lesson learned for three (3) previous project and one (1) of the new innovation method of the construction project and documented by the company.
Resumo:
Uncontrolled fibroblast growth factor (FGF) signaling can lead to human diseases, necessitating multiple layers of self-regulatory control mechanisms to keep its activity in check. Herein, we demonstrate that FGF9 and FGF20 ligands undergo a reversible homodimerization, occluding their key receptor binding sites. To test the role of dimerization in ligand autoinhibition, we introduced structure-based mutations into the dimer interfaces of FGF9 and FGF20. The mutations weakened the ability of the ligands to dimerize, effectively increasing the concentrations of monomeric ligands capable of binding and activating their cognate FGF receptor in vitro and in living cells. Interestingly, the monomeric ligands exhibit reduced heparin binding, resulting in their increased radii of heparan sulfate-dependent diffusion and biologic action, as evidenced by the wider dilation area of ex vivo lung cultures in response to implanted mutant FGF9-loaded beads. Hence, our data demonstrate that homodimerization autoregulates FGF9 and FGF20's receptor binding and concentration gradients in the extracellular matrix. Our study is the first to implicate ligand dimerization as an autoregulatory mechanism for growth factor bioactivity and sets the stage for engineering modified FGF9 subfamily ligands, with desired activity for use in both basic and translational research.
Resumo:
The use of metal stripes for the guiding of plasmons is a well established technique for the infrared regime and has resulted in the development of a myriad of passive optical components and sensing devices. However, the plasmons suffer from large losses around sharp bends, making the compact design of nanoscale sensors and circuits problematic. A compact alternative would be to use evanescent coupling between two sufficiently close stripes, and thus we propose a compact interferometer design using evanescent coupling. The sensitivity of the design is compared with that achieved using a hand-held sensor based on the Kretschmann style surface plasmon resonance technique. Modeling of the new interferometric sensor is performed for various structural parameters using finite-difference time-domain and COMSOL Multiphysics. The physical mechanisms behind the coupling and propagation of plasmons in this structure are explained in terms of the allowed modes in each section of the device.
Resumo:
Design-Build (DB) project delivery systems have increasingly been adopted by many private and public sector organizations worldwide due to its many advantages. However, many Indonesian road infrastructure projects are still delivered using the traditional design-bid-build (DBB) project delivery system. This paper reviews the existing literature to explore factors that can influence the successful implementation of DB project delivery system in Indonesian road infrastructure projects. It founds the lack of clarification in existing legislations as well as the lack of experiences, knowledge and skill as the main obstacles in implementing DB systems in Indonesia. To overcome these obstacles, this paper proposes (1) A relook at existing legislation in term of providing more guidance on determining projects appropriate for the DB, procedures for implementing DB, and the structure of builder entity; (2) To develop the skills and knowledge of DB to all stakeholders through communications, knowledge sharing and training. The outcome of this review can serve as a guide to development a framework for the implementation of the design-build project delivery system in Indonesian road infrastructure projects.
Resumo:
Boundaries are an important field of study because they mediate almost every aspect of organizational life. They are becoming increasingly more important as organizations change more frequently and yet, despite the endemic use of the boundary metaphor in common organizational parlance, they are poorly understood. Organizational boundaries are under-theorized and researchers in related fields often simply assume their existence, without defining them. The literature on organizational boundaries is fragmented with no unifying theoretical basis. As a result, when it is recognized that an organizational boundary is "dysfunctional". there is little recourse to models on which to base remediating action. This research sets out to develop just such a theoretical model and is guided by the general question: "What is the nature of organizational boundaries?" It is argued that organizational boundaries can be conceptualised through elements of both social structure and of social process. Elements of structure include objects, coupling, properties and identity. Social processes include objectification, identification, interaction and emergence. All of these elements are integrated by a core category, or basic social process, called boundary weaving. An organizational boundary is a complex system of objects and emergent properties that are woven together by people as they interact together, objectifying the world around them, identifying with these objects and creating couplings of varying strength and polarity as well as their own fragmented identity. Organizational boundaries are characterised by the multiplicity of interconnections, a particular domain of objects, varying levels of embodiment and patterns of interaction. The theory developed in this research emerged from an exploratory, qualitative research design employing grounded theory methodology. The field data was collected from the training headquarters of the New Zealand Army using semi-structured interviews and follow up observations. The unit of analysis is an organizational boundary. Only one research context was used because of the richness and multiplicity of organizational boundaries that were present. The model arose, grounded in the data collected, through a process of theoretical memoing and constant comparative analysis. Academic literature was used as a source of data to aid theory development and the saturation of some central categories. The final theory is classified as middle range, being substantive rather than formal, and is generalizable across medium to large organizations in low-context societies. The main limitation of the research arose from the breadth of the research with multiple lines of inquiry spanning several academic disciplines, with some relevant areas such as the role of identity and complexity being addressed at a necessarily high level. The organizational boundary theory developed by this research replaces the typology approaches, typical of previous theory on organizational boundaries and reconceptualises the nature of groups in organizations as well as the role of "boundary spanners". It also has implications for any theory that relies on the concept of boundaries, such as general systems theory. The main contribution of this research is the development of a holistic model of organizational boundaries including an explanation of the multiplicity of boundaries . no organization has a single definable boundary. A significant aspect of this contribution is the integration of aspects of complexity theory and identity theory to explain the emergence of higher-order properties of organizational boundaries and of organizational identity. The core category of "boundary weaving". is a powerful new metaphor that significantly reconceptualises the way organizational boundaries may be understood in organizations. It invokes secondary metaphors such as the weaving of an organization's "boundary fabric". and provides managers with other metaphorical perspectives, such as the management of boundary friction, boundary tension, boundary permeability and boundary stability. Opportunities for future research reside in formalising and testing the theory as well as developing analytical tools that would enable managers in organizations to apply the theory in practice.
Resumo:
Part-time work presents a conundrum. Across industrialised countries, there has been significant growth in part-time work as a solution to resolving the diverse interests of employers, workers and families in managing time and resources. However, there are intrinsic disadvantages associated with part-time work; notably with pay and career prospects, which impact the same stakeholders it is intended to benefit. These disadvantages are particularly evident in professional services organisations, due to strong cultural norms of long work hours, single-focused commitment to work and 24x7 availability. There are indications, both in research and practice, that the design of part-time work arrangements could be improved to address some of the disadvantages associated with part-time work, and to challenge norms and dated assumptions that influence the structure of professional work. This study explored the changes made when professional service workers move from a full-time to part-time arrangement. The study drew on a recently proposed framework for work design, which extended previous models to reflect substantial changes in the contemporary work environment. The framework proved to be a useful perspective from which to explore the design of part-time work, principally because it integrated previously disconnected areas of literature and practice through a broader focus on the context of work. Exploration of the differences between part-time and full-time roles, and comparisons between part-time roles in similar types of work, provided insights into the design of professional part-time work. Analysis revealed that having a better understanding of design characteristics may help explain disadvantages associated with professional part-time work, and that some full-time roles can be more easily adapted to part-time arrangements than others. Importantly, comparisons revealed that even roles that are considered difficult to undertake on a part-time basis can potentially be re-designed to be more effective. Through empirical testing of the framework, a contextualised work design model is presented that may guide further research and the practice of crafting part-time arrangements. The findings also suggest that poor work design may lead to the symptoms associated with professional part-time work, and that improved work design may be a potential solution to these structural constraints.
Resumo:
Emerging from the challenge to reduce energy consumption in buildings is a need for research and development into the more effective use of simulation as a decision-support tool. Despite significant research, persistent limitations in process and software inhibit the integration of energy simulation in early architectural design. This paper presents a green star case study to highlight the obstacles commonly encountered with current integration strategies. It then examines simulation-based design in the aerospace industry, which has overcome similar limitations. Finally, it proposes a design system based on this contrasting approach, coupling parametric modelling and energy simulation software for rapid and iterative performance assessment of early design options.
Resumo:
There is a need for decision support tools that integrate energy simulation into early design in the context of Australian practice. Despite the proliferation of simulation programs in the last decade, there are no ready-to-use applications that cater specifically for the Australian climate and regulations. Furthermore, the majority of existing tools focus on achieving interaction with the design domain through model-based interoperability, and largely overlook the issue of process integration. This paper proposes an energy-oriented design environment that both accommodates the Australian context and provides interactive and iterative information exchanges that facilitate feedback between domains. It then presents the structure for DEEPA, an openly customisable system that couples parametric modelling and energy simulation software as a means of developing a decision support tool to allow designers to rapidly and flexibly assess the performance of early design alternatives. Finally, it discusses the benefits of developing a dynamic and concurrent performance evaluation process that parallels the characteristics and relationships of the design process.
Resumo:
There is a growing need for parametric design software that communicates building performance feedback in early architectural exploration to support decision-making. This paper examines how the circuit of design and analysis process can be closed to provide active and concurrent feedback between architecture and services engineering domains. It presents the structure for an openly customisable design system that couples parametric modelling and energy analysis software to allow designers to assess the performance of early design iterations quickly. Finally, it discusses how user interactions with the system foster information exchanges that facilitate the sharing of design intelligence across disciplines.