364 resultados para Dataset


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study described in this paper developed a model of animal movement, which explicitly recognised each individual as the central unit of measure. The model was developed by learning from a real dataset that measured and calculated, for individual cows in a herd, their linear and angular positions and directional and angular speeds. Two learning algorithms were implemented: a Hidden Markov model (HMM) and a long-term prediction algorithm. It is shown that a HMM can be used to describe the animal's movement and state transition behaviour within several “stay” areas where cows remained for long periods. Model parameters were estimated for hidden behaviour states such as relocating, foraging and bedding. For cows’ movement between the “stay” areas a long-term prediction algorithm was implemented. By combining these two algorithms it was possible to develop a successful model, which achieved similar results to the animal behaviour data collected. This modelling methodology could easily be applied to interactions of other animal species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silhouettes are common features used by many applications in computer vision. For many of these algorithms to perform optimally, accurately segmenting the objects of interest from the background to extract the silhouettes is essential. Motion segmentation is a popular technique to segment moving objects from the background, however such algorithms can be prone to poor segmentation, particularly in noisy or low contrast conditions. In this paper, the work of [3] combining motion detection with graph cuts, is extended into two novel implementations that aim to allow greater uncertainty in the output of the motion segmentation, providing a less restricted input to the graph cut algorithm. The proposed algorithms are evaluated on a portion of the ETISEO dataset using hand segmented ground truth data, and an improvement in performance over the motion segmentation alone and the baseline system of [3] is shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maintenance trains travel in convoy. In Australia, only the first train of the convoy pays attention to the track sig- nalization (the other convoy vehicles simply follow the preceding vehicle). Because of human errors, collisions can happen between the maintenance vehicles. Although an anti-collision system based on a laser distance meter is already in operation, the existing system has a limited range due to the curvature of the tracks. In this paper, we introduce an anti-collision system based on vision. The two main ideas are, (1) to warp the camera image into an image where the rails are parallel through a projective transform, and (2) to track the two rail curves simultaneously by evaluating small parallel segments. The performance of the system is demonstrated on an image dataset.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Key resource areas (KRAs), defined as dry season foraging zones for herbivores, were studied relative to the more extensive outlying rangeland areas (non-KRAs) in Kenya. Field surveys with pastoralists, ranchers, scientists and government officials delineated KRAs on the ground. Identified KRAs were mapped based on global positioning and local experts' information on KRAs accessibility and ecological attributes. Using the map of known KRAs and non-KRAs, we examined characteristics of soils, climate, topography, land use/cover attributes at KRAs relative to non-KRAs. How and why do some areas (KRAs) support herbivores during droughts when forage is scarce in other areas of the landscape? We hypothesized that KRAs have fundamental ecological and socially determined attributes that enable them to provide forage during critical times and we sought to characterize some of those attributes in this study. At the landscape level, KRAs took different forms based on forage availability during the dry season but generally occurred in locations of the landscape with aseasonal water availability and/or difficult to access areas during wet season forage abundance. Greenness trends for KRAs versus non-KRAs were evaluated with a 22-year dataset of Normalized Difference Vegetation Index (NDVI). Field surveys of KRAs provided qualitative information on KRAs as dry season foraging zones. At the scale of the study, soil attributes did not significantly differ for KRAs compared to non-KRAs. Slopes of KRA were generally steeper compared to non-KRAs and elevation was higher at KRAs. Field survey respondents indicated that animals and humans generally avoid difficult to access hilly areas using them only when all other easily accessible rangeland is depleted of forage during droughts. Understanding the nature of KRAs will support identification, protection and restoration of critical forage hotspots for herbivores by strengthening rangeland inventory, monitoring, policy formulation, and conservation efforts to improve habitats and human welfare. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Research is beginning to provide an indication of the co-occurring substance abuse and mental health needs for the driving under the influence (DUI) population. This study aimed to examine the extent of such psychiatric problems among a large sample size of DUI offenders entering treatment in Texas. Methods This is a study of 36,373 past year DUI clients and 308,714 non-past year DUI clients admitted to Texas treatment programs between 2005 and 2008. Data were obtained from the State's administrative dataset. Results Analysis indicated that non-past year DUI clients were more likely to present with more severe illicit substance use problems, while past year DUI clients were more likely to have a primary problem with alcohol. Nevertheless, a cannabis use problem was also found to be significantly associated with DUI recidivism in the last year. In regards to mental health status, a major finding was that depression was the most common psychiatric condition reported by DUI clients, including those with more than one DUI offence in the past year. This cohort also reported elevated levels of Bipolar Disorder compared to the general population, and such a diagnosis was also associated with an increased likelihood of not completing treatment. Additionally, female clients were more likely to be diagnosed with mental health problems than males, as well as more likely to be placed on medications at admission and more likely to have problems with methamphetamine, cocaine, and opiates. Conclusions DUI offenders are at an increased risk of experiencing comorbid psychiatric disorders, and thus, corresponding treatment programs need to cater for a range of mental health concerns that are likely to affect recidivism rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crash prediction models are used for a variety of purposes including forecasting the expected future performance of various transportation system segments with similar traits. The influence of intersection features on safety have been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes compared to other segments in the transportation system. The effects of left-turn lanes at intersections in particular have seen mixed results in the literature. Some researchers have found that left-turn lanes are beneficial to safety while others have reported detrimental effects on safety. This inconsistency is not surprising given that the installation of left-turn lanes is often endogenous, that is, influenced by crash counts and/or traffic volumes. Endogeneity creates problems in econometric and statistical models and is likely to account for the inconsistencies reported in the literature. This paper reports on a limited-information maximum likelihood (LIML) estimation approach to compensate for endogeneity between left-turn lane presence and angle crashes. The effects of endogeneity are mitigated using the approach, revealing the unbiased effect of left-turn lanes on crash frequency for a dataset of Georgia intersections. The research shows that without accounting for endogeneity, left-turn lanes ‘appear’ to contribute to crashes; however, when endogeneity is accounted for in the model, left-turn lanes reduce angle crash frequencies as expected by engineering judgment. Other endogenous variables may lurk in crash models as well, suggesting that the method may be used to correct simultaneity problems with other variables and in other transportation modeling contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queensland University of Technology (QUT) completed an Australian National Data Service (ANDS) funded “Seeding the Commons Project” to contribute metadata to Research Data Australia. The project employed two Research Data Librarians from October 2009 through to July 2010. Technical support for the project was provided by QUT’s High Performance Computing and Research Support Specialists. ---------- The project identified and described QUT’s category 1 (ARC / NHMRC) research datasets. Metadata for the research datasets was stored in QUT’s Research Data Repository (Architecta Mediaflux). Metadata which was suitable for inclusion in Research Data Australia was made available to the Australian Research Data Commons (ARDC) in RIF-CS format. ---------- Several workflows and processes were developed during the project. 195 data interviews took place in connection with 424 separate research activities which resulted in the identification of 492 datasets. ---------- The project had a high level of technical support from QUT High Performance Computing and Research Support Specialists who developed the Research Data Librarian interface to the data repository that enabled manual entry of interview data and dataset metadata, creation of relationships between repository objects. The Research Data Librarians mapped the QUT metadata repository fields to RIF-CS and an application was created by the HPC and Research Support Specialists to generate RIF-CS files for harvest by the Australian Research Data Commons (ARDC). ---------- This poster will focus on the workflows and processes established for the project including: ---------- • Interview processes and instruments • Data Ingest from existing systems (including mapping to RIF-CS) • Data entry and the Data Librarian interface to Mediaflux • Verification processes • Mapping and creation of RIF-CS for the ARDC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queensland University of Technology’s Institutional Repository, QUT ePrints (http://eprints.qut.edu.au/), was established in 2003. With the help of an institutional mandate (endorsed in 2004) the repository now holds over 11,000 open access publications. The repository’s success is celebrated within the University and acknowledged nationally and internationally. QUT ePrints was built on GNU EPrints open source repository software (currently running v.3.1.3) and was originally configured to accommodate open access versions of the traditional range of research publications (journal articles, conference papers, books, book chapters and working papers). However, in 2009, the repository’s scope, content and systems were broadened and the ‘QUT Digital repository’ is now a service encompassing a range of digital collections, services and systems. For a work to be accepted in to the institutional repository, at least one of the authors/creators must have a current affiliation with QUT. However, the success of QUT ePrints in terms of its capacity to increase the visibility and accessibility of our researchers' scholarly works resulted in requests to accept digital collections of works which were out of scope. To address this need, a number of parallel digital collections have been developed. These collections include, OZcase, a collection of legal research materials and ‘The Sugar Industry Collection’; a digitsed collection of books and articles on sugar cane production and processing. Additionally, the Library has responded to requests from academics for a service to support the publication of new, and existing, peer reviewed open access journals. A project is currently underway to help a group of senior QUT academics publish a new international peer reviewed journal. The QUT Digital Repository website will be a portal for access to a range of resources to support copyright management. It is likely that it will provide an access point for the institution’s data repository. The data repository, provisionally named the ‘QUT Data Commons’, is currently a work-in-progress. The metadata for some QUT datasets will also be harvested by and discoverable via ‘Research Data Australia’, the dataset discovery service managed by the Australian National Data Service (ANDS). QUT Digital repository will integrate a range of technologies and services related to scholarly communication. This paper will discuss the development of the QUT Digital Repository, its strategic functions, the stakeholders involved and lessons learned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes a discrete component of a larger mixed-method (survey and interview) study that explored the health-promotion and risk-reduction practices of younger premenopausal survivors of ovarian, breast and haematological cancers. This thesis outlines my distinct contribution to the larger study, which was to: (1) Produce a literature review that thoroughly explored all longer-term breast cancer treatment outcomes, and which outlined the health risks to survivors associated with these; (2) Describe and analyse the health-promotion and risk-reduction behaviours of nine younger female survivors of breast cancer as articulated in the qualitative interview dataset; and (3) Test the explanatory power of the Precede-Proceed theoretical framework underpinning the study in relation to the qualitative data from the breast cancer cohort. The thesis reveals that breast cancer survivors experienced many adverse outcomes as a result of treatment. While they generally engaged in healthy lifestyle practices, a lack of knowledge about many recommended health behaviours emerged throughout the interviews. The participants also described significant internal and external pressures to behave in certain ways because of the social norms surrounding the disease. This thesis also reports that the Precede-Proceed model is a generally robust approach to data collection, analysis and interpretation in the context of breast cancer survivorship. It provided plausible explanations for much of the data in this study. However, profound sociological and psychological implications arose during the analysis that were not effectively captured or explained by the theories underpinning the model. A sociological filter—such as Turner’s explanation of the meaning of the body and embodiment in the social sphere (Turner, 2008)—and the psychological concerns teased out in Mishel’s (1990) Uncertainty in Illness Theory, provided a useful dimension to the findings generated through the Precede-Proceed model. The thesis concludes with several recommendations for future research, clinical practice and education in this context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Efforts to prevent the development of overweight and obesity have increasingly focused early in the life course as we recognise that both metabolic and behavioural patterns are often established within the first few years of life. Randomised controlled trials (RCTs) of interventions are even more powerful when, with forethought, they are synthesised into an individual patient data (IPD) prospective meta-analysis (PMA). An IPD PMA is a unique research design where several trials are identified for inclusion in an analysis before any of the individual trial results become known and the data are provided for each randomised patient. This methodology minimises the publication and selection bias often associated with a retrospective meta-analysis by allowing hypotheses, analysis methods and selection criteria to be specified a priori. Methods/Design: The Early Prevention of Obesity in CHildren (EPOCH) Collaboration was formed in 2009. The main objective of the EPOCH Collaboration is to determine if early intervention for childhood obesity impacts on body mass index (BMI) z scores at age 18-24 months. Additional research questions will focus on whether early intervention has an impact on children’s dietary quality, TV viewing time, duration of breastfeeding and parenting styles. This protocol includes the hypotheses, inclusion criteria and outcome measures to be used in the IPD PMA. The sample size of the combined dataset at final outcome assessment (approximately 1800 infants) will allow greater precision when exploring differences in the effect of early intervention with respect to pre-specified participant- and intervention-level characteristics. Discussion: Finalisation of the data collection procedures and analysis plans will be complete by the end of 2010. Data collection and analysis will occur during 2011-2012 and results should be available by 2013. Trial registration number: ACTRN12610000789066

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With regard to the long-standing problem of the semantic gap between low-level image features and high-level human knowledge, the image retrieval community has recently shifted its emphasis from low-level features analysis to high-level image semantics extrac- tion. User studies reveal that users tend to seek information using high-level semantics. Therefore, image semantics extraction is of great importance to content-based image retrieval because it allows the users to freely express what images they want. Semantic content annotation is the basis for semantic content retrieval. The aim of image anno- tation is to automatically obtain keywords that can be used to represent the content of images. The major research challenges in image semantic annotation are: what is the basic unit of semantic representation? how can the semantic unit be linked to high-level image knowledge? how can the contextual information be stored and utilized for image annotation? In this thesis, the Semantic Web technology (i.e. ontology) is introduced to the image semantic annotation problem. Semantic Web, the next generation web, aims at mak- ing the content of whatever type of media not only understandable to humans but also to machines. Due to the large amounts of multimedia data prevalent on the Web, re- searchers and industries are beginning to pay more attention to the Multimedia Semantic Web. The Semantic Web technology provides a new opportunity for multimedia-based applications, but the research in this area is still in its infancy. Whether ontology can be used to improve image annotation and how to best use ontology in semantic repre- sentation and extraction is still a worth-while investigation. This thesis deals with the problem of image semantic annotation using ontology and machine learning techniques in four phases as below. 1) Salient object extraction. A salient object servers as the basic unit in image semantic extraction as it captures the common visual property of the objects. Image segmen- tation is often used as the �rst step for detecting salient objects, but most segmenta- tion algorithms often fail to generate meaningful regions due to over-segmentation and under-segmentation. We develop a new salient object detection algorithm by combining multiple homogeneity criteria in a region merging framework. 2) Ontology construction. Since real-world objects tend to exist in a context within their environment, contextual information has been increasingly used for improving object recognition. In the ontology construction phase, visual-contextual ontologies are built from a large set of fully segmented and annotated images. The ontologies are composed of several types of concepts (i.e. mid-level and high-level concepts), and domain contextual knowledge. The visual-contextual ontologies stand as a user-friendly interface between low-level features and high-level concepts. 3) Image objects annotation. In this phase, each object is labelled with a mid-level concept in ontologies. First, a set of candidate labels are obtained by training Support Vectors Machines with features extracted from salient objects. After that, contextual knowledge contained in ontologies is used to obtain the �nal labels by removing the ambiguity concepts. 4) Scene semantic annotation. The scene semantic extraction phase is to get the scene type by using both mid-level concepts and domain contextual knowledge in ontologies. Domain contextual knowledge is used to create scene con�guration that describes which objects co-exist with which scene type more frequently. The scene con�guration is represented in a probabilistic graph model, and probabilistic inference is employed to calculate the scene type given an annotated image. To evaluate the proposed methods, a series of experiments have been conducted in a large set of fully annotated outdoor scene images. These include a subset of the Corel database, a subset of the LabelMe dataset, the evaluation dataset of localized semantics in images, the spatial context evaluation dataset, and the segmented and annotated IAPR TC-12 benchmark.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in data mining have provided techniques for automatically discovering underlying knowledge and extracting useful information from large volumes of data. Data mining offers tools for quick discovery of relationships, patterns and knowledge in large complex databases. Application of data mining to manufacturing is relatively limited mainly because of complexity of manufacturing data. Growing self organizing map (GSOM) algorithm has been proven to be an efficient algorithm to analyze unsupervised DNA data. However, it produced unsatisfactory clustering when used on some large manufacturing data. In this paper a data mining methodology has been proposed using a GSOM tool which was developed using a modified GSOM algorithm. The proposed method is used to generate clusters for good and faulty products from a manufacturing dataset. The clustering quality (CQ) measure proposed in the paper is used to evaluate the performance of the cluster maps. The paper also proposed an automatic identification of variables to find the most probable causative factor(s) that discriminate between good and faulty product by quickly examining the historical manufacturing data. The proposed method offers the manufacturers to smoothen the production flow and improve the quality of the products. Simulation results on small and large manufacturing data show the effectiveness of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the development of a low-cost sensor platform for use in ground-based visual pose estimation and scene mapping tasks. We seek to develop a technical solution using low-cost vision hardware that allows us to accurately estimate robot position for SLAM tasks. We present results from the application of a vision based pose estimation technique to simultaneously determine camera poses and scene structure. The results are generated from a dataset gathered traversing a local road at the St Lucia Campus of the University of Queensland. We show the accuracy of the pose estimation over a 1.6km trajectory in relation to GPS ground truth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interacting with technology within a vehicle environment using a voice interface can greatly reduce the effects of driver distraction. Most current approaches to this problem only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to circumvent this is to use the visual modality in addition. However, capturing, storing and distributing audio-visual data in a vehicle environment is very costly and difficult. One current dataset available for such research is the AVICAR [1] database. Unfortunately this database is largely unusable due to timing mismatch between the two streams and in addition, no protocol is available. We have overcome this problem by re-synchronising the streams on the phone-number portion of the dataset and established a protocol for further research. This paper presents the first audio-visual results on this dataset for speaker-independent speech recognition. We hope this will serve as a catalyst for future research in this area.