240 resultados para D-loop
Resumo:
Ultraviolet radiation (UV) is the carcinogen that causes the most common malignancy in humans – skin cancer. However, moderate UV exposure is essential for producing vitaminDin our skin. VitaminDincreases the absorption of calcium from the diet, and adequate calcium is necessary for the building and maintenance of bones. Thus, low levels of vitamin D can cause osteomalacia and rickets and contribute to osteoporosis. Emerging evidence also suggests vitamin D may protect against falls, internal cancers, psychiatric conditions, autoimmune diseases and cardiovascular diseases. Since the dominant source of vitamin D is sunlight exposure, there is a need to understand what is a “balanced” level of sun exposure to maintain an adequate level of vitamin D but minimise the risks of eye damage, skin damage and skin cancer resulting from excessive UV exposure. There are many steps in the pathway from incoming solar UV to the eventual vitamin D status of humans (measured as 25-hydroxyvitamin D in the blood), and our knowledge about many of these steps is currently incomplete. This project begins by investigating the levels of UV available for synthesising vitamin D, and how these levels vary across seasons, latitudes and times of the day. The thesis then covers experiments conducted with an in vitro model, which was developed to study several aspects of vitamin D synthesis. Results from the model suggest the relationship between UV dose and vitamin D is not linear. This is an important input into public health messages regarding ‘safe’ UV exposure: larger doses of UV, beyond a certain limit, may not continue to produce vitamin D; however, they will increase the risk of skin cancers and eye damage. The model also showed that, when given identical doses of UV, the amount of vitamin D produced was impacted by temperature. In humans, a temperature-dependent reaction must occur in the top layers of human skin, prior to vitamin D entering the bloodstream. The hypothesis will be raised that cooler temperatures (occurring in winter and at high latitudes) may reduce vitamin D production in humans. Finally, the model has also been used to study the wavelengths of UV thought to be responsible for producing vitamin D. It appears that vitamin D production is limited to a small range of UV wavelengths, which may be narrower than previously thought. Together, these results suggest that further research is needed into the ability of humans to synthesise vitamin D from sunlight. In particular, more information is needed about the dose-response relationship in humans and to investigate the proposed impact of temperature. Having an accurate action spectrum will also be essential for measuring the available levels of vitamin D-effective UV. As this research continues, it will contribute to the scientific evidence-base needed for devising a public health message that will balance the risks of excessive UV exposure with maintaining adequate vitamin D.
Resumo:
Jonzi D, one of the leading Hip Hop voices in the UK, creates contemporary theatrical works that merge dance, street art, original scored music and contemporary rap poetry, to create theatrical events that expand a thriving sense of a Hip Hop nation with citizens in the UK, throughout southern Africa and the rest of the world. In recent years Hip Hop has evolved as a performance genre in and of itself that not only borrows from other forms but vitally now contributes back to the body of contemporary practice in the performing arts. As part of this work Jonzi’s company Jonzi D Productions is committed to creating and touring original Hip Hop theatre that promotes the continuing development and awareness of a nation with its own language, culture and currency that exists without borders. Through the deployment of a universal voice from the local streets of Johannesburg and the East End of London, Jonzi D creates a form of highly energized performance that elevates Hip Hop as great democratiser between the highly developed global and under resourced local in the world. It is the staging of this democratised and technologised future (and present), that poses the greatest challenge for the scenographer working with Jonzi and his company, and the associated deprogramming and translation of the artists particular filmic vision to the stage, that this discussion will explore. This paper interrogates not only how a scenographic strategy can support the existence of this work but also how the scenographer as outsider can enter and influence this nation.
Resumo:
In recent years, multilevel converters are becoming more popular and attractive than traditional converters in high voltage and high power applications. Multilevel converters are particularly suitable for harmonic reduction in high power applications where semiconductor devices are not able to operate at high switching frequencies or in high voltage applications where multilevel converters reduce the need to connect devices in series to achieve high switch voltage ratings. This thesis investigated two aspects of multilevel converters: structure and control. The first part of this thesis focuses on inductance between a DC supply and inverter components in order to minimise loop inductance, which causes overvoltages and stored energy losses during switching. Three dimensional finite element simulations and experimental tests have been carried out for all sections to verify theoretical developments. The major contributions of this section of the thesis are as follows: The use of a large area thin conductor sheet with a rectangular cross section separated by dielectric sheets (planar busbar) instead of circular cross section wires, contributes to a reduction of the stray inductance. A number of approximate equations exist for calculating the inductance of a rectangular conductor but an assumption was made that the current density was uniform throughout the conductors. This assumption is not valid for an inverter with a point injection of current. A mathematical analysis of a planar bus bar has been performed at low and high frequencies and the inductance and the resistance values between the two points of the planar busbar have been determined. A new physical structure for a voltage source inverter with symmetrical planar bus bar structure called Reduced Layer Planar Bus bar, is proposed in this thesis based on the current point injection theory. This new type of planar busbar minimises the variation in stray inductance for different switching states. The reduced layer planar busbar is a new innovation in planar busbars for high power inverters with minimum separation between busbars, optimum stray inductance and improved thermal performances. This type of the planar busbar is suitable for high power inverters, where the voltage source is supported by several capacitors in parallel in order to provide a low ripple DC voltage during operation. A two layer planar busbar with different materials has been analysed theoretically in order to determine the resistance of bus bars during switching. Increasing the resistance of the planar busbar can gain a damping ratio between stray inductance and capacitance and affects the performance of current loop during switching. The aim of this section is to increase the resistance of the planar bus bar at high frequencies (during switching) and without significantly increasing the planar busbar resistance at low frequency (50 Hz) using the skin effect. This contribution shows a novel structure of busbar suitable for high power applications where high resistance is required at switching times. In multilevel converters there are different loop inductances between busbars and power switches associated with different switching states. The aim of this research is to consider all combinations of the switching states for each multilevel converter topology and identify the loop inductance for each switching state. Results show that the physical layout of the busbars is very important for minimisation of the loop inductance at each switch state. Novel symmetrical busbar structures are proposed for multilevel converters with diode-clamp and flying-capacitor topologies which minimise the worst case in stray inductance for different switching states. Overshoot voltages and thermal problems are considered for each topology to optimise the planar busbar structure. In the second part of the thesis, closed loop current techniques have been investigated for single and three phase multilevel converters. The aims of this section are to investigate and propose suitable current controllers such as hysteresis and predictive techniques for multilevel converters with low harmonic distortion and switching losses. This section of the thesis can be classified into three parts as follows: An optimum space vector modulation technique for a three-phase voltage source inverter based on a minimum-loss strategy is proposed. One of the degrees of freedom for optimisation of the space vector modulation is the selection of the zero vectors in the switching sequence. This new method improves switching transitions per cycle for a given level of distortion as the zero vector does not alternate between each sector. The harmonic spectrum and weighted total harmonic distortion for these strategies are compared and results show up to 7% weighted total harmonic distortion improvement over the previous minimum-loss strategy. The concept of SVM technique is a very convenient representation of a set of three-phase voltages or currents used for current control techniques. A new hysteresis current control technique for a single-phase multilevel converter with flying-capacitor topology is developed. This technique is based on magnitude and time errors to optimise the level change of converter output voltage. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimise switching losses. Logic controls require handling a large number of switches and a Programmable Logic Device (PLD) is a natural implementation for state transition description. The simulation and experimental results describe and verify the current control technique for the converter. A novel predictive current control technique is proposed for a three-phase multilevel converter, which controls the capacitors' voltage and load current with minimum current ripple and switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase five-level inverter with a pure inductive load has been implemented to track three-phase reference currents using analogue circuits and a programmable logic device.
Analytical modeling and sensitivity analysis for travel time estimation on signalized urban networks
Resumo:
This paper presents a model for estimation of average travel time and its variability on signalized urban networks using cumulative plots. The plots are generated based on the availability of data: a) case-D, for detector data only; b) case-DS, for detector data and signal timings; and c) case-DSS, for detector data, signal timings and saturation flow rate. The performance of the model for different degrees of saturation and different detector detection intervals is consistent for case-DSS and case-DS whereas, for case-D the performance is inconsistent. The sensitivity analysis of the model for case-D indicates that it is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
Speeding is recognized as a major contributing factor in traffic crashes. In order to reduce speed-related crashes, the city of Scottsdale, Arizona implemented the first fixed-camera photo speed enforcement program (SEP) on a limited access freeway in the US. The 9-month demonstration program spanning from January 2006 to October 2006 was implemented on a 6.5 mile urban freeway segment of Arizona State Route 101 running through Scottsdale. This paper presents the results of a comprehensive analysis of the impact of the SEP on speeding behavior, crashes, and the economic impact of crashes. The impact on speeding behavior was estimated using generalized least square estimation, in which the observed speeds and the speeding frequencies during the program period were compared to those during other periods. The impact of the SEP on crashes was estimated using 3 evaluation methods: a before-and-after (BA) analysis using a comparison group, a BA analysis with traffic flow correction, and an empirical Bayes BA analysis with time-variant safety. The analysis results reveal that speeding detection frequencies (speeds> or =76 mph) increased by a factor of 10.5 after the SEP was (temporarily) terminated. Average speeds in the enforcement zone were reduced by about 9 mph when the SEP was implemented, after accounting for the influence of traffic flow. All crash types were reduced except rear-end crashes, although the estimated magnitude of impact varies across estimation methods (and their corresponding assumptions). When considering Arizona-specific crash related injury costs, the SEP is estimated to yield about $17 million in annual safety benefits.
Resumo:
This paper discusses a new paradigm of real-time simulation of power systems in which equipment can be interfaced with a real-time digital simulator. In this scheme, one part of a power system can be simulated by using a real-time simulator; while the other part is implemeneted as a physical system. The only interface of the physical system with the computer-based simulator is through data-acquisition system. The physical system is driven by a voltage-source converter (VSC)that mimics the power system simulated in the real-time simulator. In this papar, the VSC operates in a voltage-control mode to track the point of common coupling voltage signal supplied by the digital simulator. This type of splitting a network in two parts and running a real-time simulation with a physical system in parallel is called a power network in loop here. this opens up the possibility of study of interconnection o f one or several distributed generators to a complex power network. The proposed implementation is verified through simulation studies using PSCAD/EMTDC and through hardware implementation on a TMS320G2812 DSP.
Resumo:
Background: Sun exposure is the main source of vitamin D. Increasing scientific and media attention to the potential health benefits of sun exposure may lead to changes in sun exposure behaviors. Methods: To provide data that might help frame public health messages, we conducted an online survey among office workers in Brisbane, Australia, to determine knowledge and attitudes about vitamin D and associations of these with sun protection practices. Of the 4,709 people invited to participate, 2,867 (61%) completed the questionnaire. This analysis included 1,971 (69%) participants who indicated that they had heard about vitamin D. Results: Lack of knowledge about vitamin D was apparent. Eighteen percent of people were unaware of the bone benefits of vitamin D but 40% listed currently unconfirmed benefits. Over half of the participants indicated that more than 10 minutes in the sun was needed to attain enough vitamin D in summer, and 28% indicated more than 20 minutes in winter. This was significantly associated with increased time outdoors and decreased sunscreen use. People believing sun protection might cause vitamin D deficiency (11%) were less likely to be frequent sunscreen users (summer odds ratio, 0.63; 95% confidence interval, 0.52-0.75). Conclusions: Our findings suggest that there is some confusion about sun exposure and vitamin D, and that this may result in reduced sun-protective behavior. Impact: More information is needed about vitamin D production in the skin. In the interim, education campaigns need to specifically address the vitamin D issue to ensure that skin cancer incidence does not increase.
Resumo:
In this paper, we present a ∑GIi/D/1/∞ queue with heterogeneous input/output slot times. This queueing model can be regarded as an extension of the ordinary GI/D/1/∞ model. For this ∑GIi/D/1/∞ queue, we assume that several input streams arrive at the system according to different slot times. In other words, there are different slot times for different input/output processes in the queueing model. The queueing model can therefore be used for an ATM multiplexer with heterogeneous input/output link capacities. Several cases of the queueing model are discussed to reflect different relationships among the input/output link capacities of an ATM multiplexer. In the queueing analysis, two approaches: the Markov model and the probability generating function technique, are adopted to develop the queue length distributions observed at different epochs. This model is particularly useful in the performance analysis of ATM multiplexers with heterogeneous input/output link capacities.
Resumo:
Vitamin D, along with calcium, may help decrease the risk of falls and fractures in older adults. Sunlight and other sources of ultraviolet radiation are not recommended because they increase the risk of skin cancers and sun-induced eye disorders. Rather, vitamin D and calcium needs should be met through foods and dietary supplements. As a preventive measure to reduce the risk of falls and fractures, it is recommended that older adults meet the 2005 Dietary Guidelines and consume 1000 IU of vitamin D, preferably as vitamin D3.
Resumo:
Cutaneous cholecalciferol synthesis has not been considered in making recommendations for vitamin D intake. Our objective was to model the effects of sun exposure, vitamin D intake, and skin reflectance (pigmentation) on serum 25-hydroxyvitamin D (25[OH]D) in young adults with a wide range of skin reflectance and sun exposure. Four cohorts of participants (n = 72 total) were studied for 7-8 wk in the fall, winter, spring, and summer in Davis, CA [38.5° N, 121.7° W, Elev. 49 ft (15 m)]. Skin reflectance was measured using a spectrophotometer, vitamin D intake using food records, and sun exposure using polysulfone dosimeter badges. A multiple regression model (R^sup 2^ = 0.55; P < 0.0001) was developed and used to predict the serum 25(OH)D concentration for participants with low [median for African ancestry (AA)] and high [median for European ancestry (EA)] skin reflectance and with low [20th percentile, ~20 min/d, ~18% body surface area (BSA) exposed] and high (80th percentile, ~90 min/d, ~35% BSA exposed) sun exposure, assuming an intake of 200 IU/d (5 ug/d). Predicted serum 25(OH)D concentrations for AA individuals with low and high sun exposure in the winter were 24 and 42 nmol/L and in the summer were 40 and 60 nmol/L. Corresponding values for EA individuals were 35 and 60 nmol/L in the winter and in the summer were 58 and 85 nmol/L. To achieve 25(OH)D ≥75 nmol/L, we estimate that EA individuals with high sun exposure need 1300 IU/d vitamin D intake in the winter and AA individuals with low sun exposure need 2100-3100 IU/d year-round.