204 resultados para Cost-effective methods
Resumo:
Evidence-based Practice (EBP) has recently emerged as a topic of discussion amongst professionals within the library and information services (LIS) industry. Simply stated, EBP is the process of using formal research skills and methods to assist in decision making and establishing best practice. The emerging interest in EBP within the library context serves to remind the library profession that research skills and methods can help ensure that the library industry remains current and relevant in changing times. The LIS sector faces ongoing challenges in terms of the expectation that financial and human resources will be managed efficiently, particularly if library budgets are reduced and accountability to the principal stakeholders is increased. Library managers are charged with the responsibility to deliver relevant and cost effective services, in an environment characterised by rapidly changing models of information provision, information access and user behaviours. Consequently they are called upon not only to justify the services they provide, or plan to introduce, but also to measure the effectiveness of these services and to evaluate the impact on the communities they serve. The imperative for innovation in and enhancements to library practice is accompanied by the need for a strong understanding of the processes of review, measurement, assessment and evaluation. In 2001 the Centre for Information Research was commissioned by the Chartered Institute of Library and Information Professionals (CILIP) in the UK to conduct an examination into the research landscape for library and information science. The examination concluded that research is “important for the LIS [library and information science] domain in a number of ways” (McNicol & Nankivell, 2001, p.77). At the professional level, research can inform practice, assist in the future planning of the profession, raise the profile of the discipline, and indeed the reputation and standing of the library and information service itself. At the personal level, research can “broaden horizons and offer individuals development opportunities” (McNicol & Nankivell, 2001, p.77). The study recommended that “research should be promoted as a valuable professional activity for practitioners to engage in” (McNicol & Nankivell, 2001, p.82). This chapter will consider the role of EBP within the library profession. A brief review of key literature in the area is provided. The review considers issues of definition and terminology, highlights the importance of research in professional practice and outlines the research approaches that underpin EBP. The chapter concludes with a consideration of the specific application of EBP within the dynamic and evolving field of information literacy (IL).
Resumo:
Excessive consumption of alcohol is a serious public health problem. While intensive treatments are suitable for those who are physically dependent on alcohol, they are not cost-effective options for the vast majority of problem drinkers who are not dependent. There is good evidence that brief interventions are effective in reducing overall alcohol consumption, alcohol-related problems, and health-care utilisation among nondependent problem drinkers. Psychologists are in an ideal position to opportunistically detect people who drink excessively and to offer them brief advice to reduce their drinking. In this paper we outline the process involved in providing brief opportunistic screening and intervention for problem drinkers. We also discuss methods that psychologists can employ if a client is not ready to reduce drinking, or is ambivalent about change. Depending on the client's level of motivation to change, psychologists can engage in either an education-clarification approach, a commitment-enhancement approach, or a skills-training approach. Routine engagement in opportunistic intervention is an important public-health approach to reducing alcohol-related harm in the community.
Resumo:
Background: Given escalating rates of chronic disease, broad-reach and cost-effective interventions to increase physical activity and improve dietary intake are needed. The cost-effectiveness of a Telephone Counselling intervention to improve physical activity and diet, targeting adults with established chronic diseases in a low socio-economic area of a major Australian city was examined. Methodology/Principal Findings: A cost-effectiveness modelling study using data collected between February 2005 and November 2007 from a cluster-randomised trial that compared Telephone Counselling with a “Usual Care” (brief intervention) alternative. Economic outcomes were assessed using a state-transition Markov model, which predicted the progress of participants through five health states relating to physical activity and dietary improvement, for ten years after recruitment. The costs and health benefits of Telephone Counselling, Usual Care and an existing practice (Real Control) group were compared. Telephone Counselling compared to Usual Care was not cost-effective ($78,489 per quality adjusted life year gained). However, the Usual Care group did not represent existing practice and is not a useful comparator for decision making. Comparing Telephone Counselling outcomes to existing practice (Real Control), the intervention was found to be cost-effective ($29,375 per quality adjusted life year gained). Usual Care (brief intervention) compared to existing practice (Real Control) was also cost-effective ($12,153 per quality adjusted life year gained). Conclusions/Significance: This modelling study shows that a decision to adopt a Telephone Counselling program over existing practice (Real Control) is likely to be cost-effective. Choosing the ‘Usual Care’ brief intervention over existing practice (Real Control) shows a lower cost per quality adjusted life year, but the lack of supporting evidence for efficacy or sustainability is an important consideration for decision makers. The economics of behavioural approaches to improving health must be made explicit if decision makers are to be convinced that allocating resources toward such programs is worthwhile.
Resumo:
This submission has been prepared in response to the Parliamentary Travelsafe Committee's Inquiry into vehicle impoundment for drink drivers to address research relevant to the committee’s investigation into whether: • Drink drivers in Queensland continue to drive illegally after being apprehended by police or disqualified from driving by the courts; • The incidence of repeat drink driving undermines the effectiveness of existing penalties for drink driving offences; and • Vehicle impoundment and/or ignition key confiscation are cost-effective deterrents that will reduce drink driving recidivism, relating to other existing or potential methods of managing offenders.
Resumo:
Background: Reducing rates of healthcare acquired infection has been identified by the Australian Commission on Safety and Quality in Health Care as a national priority. One of the goals is the prevention of central venous catheter-related bloodstream infection (CR-BSI). At least 3,500 cases of CR-BSI occur annually in Australian hospitals, resulting in unnecessary deaths and costs to the healthcare system between $25.7 and $95.3 million. Two approaches to preventing these infections have been proposed: use of antimicrobial catheters (A-CVCs); or a catheter care and management ‘bundle’. Given finite healthcare budgets, decisions about the optimal infection control policy require consideration of the effectiveness and value for money of each approach. Objectives: The aim of this research is to use a rational economic framework to inform efficient infection control policy relating to the prevention of CR-BSI in the intensive care unit. It addresses three questions relating to decision-making in this area: 1. Is additional investment in activities aimed at preventing CR-BSI an efficient use of healthcare resources? 2. What is the optimal infection control strategy from amongst the two major approaches that have been proposed to prevent CR-BSI? 3. What uncertainty is there in this decision and can a research agenda to improve decision-making in this area be identified? Methods: A decision analytic model-based economic evaluation was undertaken to identify an efficient approach to preventing CR-BSI in Queensland Health intensive care units. A Markov model was developed in conjunction with a panel of clinical experts which described the epidemiology and prognosis of CR-BSI. The model was parameterised using data systematically identified from the published literature and extracted from routine databases. The quality of data used in the model and its validity to clinical experts and sensitivity to modelling assumptions was assessed. Two separate economic evaluations were conducted. The first evaluation compared all commercially available A-CVCs alongside uncoated catheters to identify which was cost-effective for routine use. The uncertainty in this decision was estimated along with the value of collecting further information to inform the decision. The second evaluation compared the use of A-CVCs to a catheter care bundle. We were unable to estimate the cost of the bundle because it is unclear what the full resource requirements are for its implementation, and what the value of these would be in an Australian context. As such we undertook a threshold analysis to identify the cost and effectiveness thresholds at which a hypothetical bundle would dominate the use of A-CVCs under various clinical scenarios. Results: In the first evaluation of A-CVCs, the findings from the baseline analysis, in which uncertainty is not considered, show that the use of any of the four A-CVCs will result in health gains accompanied by cost-savings. The MR catheters dominate the baseline analysis generating 1.64 QALYs and cost-savings of $130,289 per 1.000 catheters. With uncertainty, and based on current information, the MR catheters remain the optimal decision and return the highest average net monetary benefits ($948 per catheter) relative to all other catheter types. This conclusion was robust to all scenarios tested, however, the probability of error in this conclusion is high, 62% in the baseline scenario. Using a value of $40,000 per QALY, the expected value of perfect information associated with this decision is $7.3 million. An analysis of the expected value of perfect information for individual parameters suggests that it may be worthwhile for future research to focus on providing better estimates of the mortality attributable to CR-BSI and the effectiveness of both SPC and CH/SSD (int/ext) catheters. In the second evaluation of the catheter care bundle relative to A-CVCs, the results which do not consider uncertainty indicate that a bundle must achieve a relative risk of CR-BSI of at least 0.45 to be cost-effective relative to MR catheters. If the bundle can reduce rates of infection from 2.5% to effectively zero, it is cost-effective relative to MR catheters if national implementation costs are less than $2.6 million ($56,610 per ICU). If the bundle can achieve a relative risk of 0.34 (comparable to that reported in the literature) it is cost-effective, relative to MR catheters, if costs over an 18 month period are below $613,795 nationally ($13,343 per ICU). Once uncertainty in the decision is considered, the cost threshold for the bundle increases to $2.2 million. Therefore, if each of the 46 Level III ICUs could implement an 18 month catheter care bundle for less than $47,826 each, this approach would be cost effective relative to A-CVCs. However, the uncertainty is substantial and the probability of error in concluding that the bundle is the cost-effective approach at a cost of $2.2 million is 89%. Conclusions: This work highlights that infection control to prevent CR-BSI is an efficient use of healthcare resources in the Australian context. If there is no further investment in infection control, an opportunity cost is incurred, which is the potential for a more efficient healthcare system. Minocycline/rifampicin catheters are the optimal choice of antimicrobial catheter for routine use in Australian Level III ICUs, however, if a catheter care bundle implemented in Australia was as effective as those used in the large studies in the United States it would be preferred over the catheters if it was able to be implemented for less than $47,826 per Level III ICU. Uncertainty is very high in this decision and arises from multiple sources. There are likely greater costs to this uncertainty for A-CVCs, which may carry hidden costs, than there are for a catheter care bundle, which is more likely to provide indirect benefits to clinical practice and patient safety. Research into the mortality attributable to CR-BSI, the effectiveness of SPC and CH/SSD (int/ext) catheters and the cost and effectiveness of a catheter care bundle in Australia should be prioritised to reduce uncertainty in this decision. This thesis provides the economic evidence to inform one area of infection control, but there are many other infection control decisions for which information about the cost-effectiveness of competing interventions does not exist. This work highlights some of the challenges and benefits to generating and using economic evidence for infection control decision-making and provides support for commissioning more research into the cost-effectiveness of infection control.
Resumo:
Background: There is a sound rationale for the population-based approach to falls injury prevention but there is currently insufficient evidence to advise governments and communities on how they can use population-based strategies to achieve desired reductions in the burden of falls-related injury.---------- Aim: To quantify the effectiveness of a streamlined (and thus potentially sustainable and cost-effective), population-based, multi-factorial falls injury prevention program for people over 60 years of age.---------- Methods: Population-based falls-prevention interventions were conducted at two geographically-defined and separate Australian sites: Wide Bay, Queensland, and Northern Rivers, NSW. Changes in the prevalence of key risk factors and changes in rates of injury outcomes within each community were compared before and after program implementation and changes in rates of injury outcomes in each community were also compared with the rates in their respective States.---------- Results: The interventions in neither community substantially decreased the rate of falls-related injury among people aged 60 years or older, although there was some evidence of reductions in occurrence of multiple falls reported by women. In addition, there was some indication of improvements in fall-related risk factors, but the magnitudes were generally modest.---------- Conclusion: The evidence suggests that low intensity population-based falls prevention programs may not be as effective as those are intensively implemented.
Resumo:
Background Colorectal cancer survivors may suffer from a range of ongoing psychosocial and physical problems that negatively impact on quality of life. This paper presents the study protocol for a novel telephone-delivered intervention to improve lifestyle factors and health outcomes for colorectal cancer survivors. Methods/Design Approximately 350 recently diagnosed colorectal cancer survivors will be recruited through the Queensland Cancer Registry and randomised to the intervention or control condition. The intervention focuses on symptom management, lifestyle and psychosocial support to assist participants to make improvements in lifestyle factors (physical activity, healthy diet, weight management, and smoking cessation) and health outcomes. Participants will receive up to 11 telephone-delivered sessions over a 6 month period from a qualified health professional or 'health coach'. Data collection will occur at baseline (Time 1), post-intervention or six months follow-up (Time 2), and at 12 months follow-up for longer term effects (Time 3). Primary outcome measures will include physical activity, cancer-related fatigue and quality of life. A cost-effective analysis of the costs and outcomes for survivors in the intervention and control conditions will be conducted from the perspective of health care costs to the government. Discussion The study will provide valuable information about an innovative intervention to improve lifestyle factors and health outcomes for colorectal cancer survivors.
Resumo:
Campylobacter jejuni followed by Campylobacter coli contribute substantially to the economic and public health burden attributed to food-borne infections in Australia. Genotypic characterisation of isolates has provided new insights into the epidemiology and pathogenesis of C. jejuni and C. coli. However, currently available methods are not conducive to large scale epidemiological investigations that are necessary to elucidate the global epidemiology of these common food-borne pathogens. This research aims to develop high resolution C. jejuni and C. coli genotyping schemes that are convenient for high throughput applications. Real-time PCR and High Resolution Melt (HRM) analysis are fundamental to the genotyping schemes developed in this study and enable rapid, cost effective, interrogation of a range of different polymorphic sites within the Campylobacter genome. While the sources and routes of transmission of campylobacters are unclear, handling and consumption of poultry meat is frequently associated with human campylobacteriosis in Australia. Therefore, chicken derived C. jejuni and C. coli isolates were used to develop and verify the methods described in this study. The first aim of this study describes the application of MLST-SNP (Multi Locus Sequence Typing Single Nucleotide Polymorphisms) + binary typing to 87 chicken C. jejuni isolates using real-time PCR analysis. These typing schemes were developed previously by our research group using isolates from campylobacteriosis patients. This present study showed that SNP + binary typing alone or in combination are effective at detecting epidemiological linkage between chicken derived Campylobacter isolates and enable data comparisons with other MLST based investigations. SNP + binary types obtained from chicken isolates in this study were compared with a previously SNP + binary and MLST typed set of human isolates. Common genotypes between the two collections of isolates were identified and ST-524 represented a clone that could be worth monitoring in the chicken meat industry. In contrast, ST-48, mainly associated with bovine hosts, was abundant in the human isolates. This genotype was, however, absent in the chicken isolates, indicating the role of non-poultry sources in causing human Campylobacter infections. This demonstrates the potential application of SNP + binary typing for epidemiological investigations and source tracing. While MLST SNPs and binary genes comprise the more stable backbone of the Campylobacter genome and are indicative of long term epidemiological linkage of the isolates, the development of a High Resolution Melt (HRM) based curve analysis method to interrogate the hypervariable Campylobacter flagellin encoding gene (flaA) is described in Aim 2 of this study. The flaA gene product appears to be an important pathogenicity determinant of campylobacters and is therefore a popular target for genotyping, especially for short term epidemiological studies such as outbreak investigations. HRM curve analysis based flaA interrogation is a single-step closed-tube method that provides portable data that can be easily shared and accessed. Critical to the development of flaA HRM was the use of flaA specific primers that did not amplify the flaB gene. HRM curve analysis flaA interrogation was successful at discriminating the 47 sequence variants identified within the 87 C. jejuni and 15 C. coli isolates and correlated to the epidemiological background of the isolates. In the combinatorial format, the resolving power of flaA was additive to that of SNP + binary typing and CRISPR (Clustered regularly spaced short Palindromic repeats) HRM and fits the PHRANA (Progressive hierarchical resolving assays using nucleic acids) approach for genotyping. The use of statistical methods to analyse the HRM data enhanced sophistication of the method. Therefore, flaA HRM is a rapid and cost effective alternative to gel- or sequence-based flaA typing schemes. Aim 3 of this study describes the development of a novel bioinformatics driven method to interrogate Campylobacter MLST gene fragments using HRM, and is called ‘SNP Nucleated Minim MLST’ or ‘Minim typing’. The method involves HRM interrogation of MLST fragments that encompass highly informative “Nucleating SNPS” to ensure high resolution. Selection of fragments potentially suited to HRM analysis was conducted in silico using i) “Minimum SNPs” and ii) the new ’HRMtype’ software packages. Species specific sets of six “Nucleating SNPs” and six HRM fragments were identified for both C. jejuni and C. coli to ensure high typeability and resolution relevant to the MLST database. ‘Minim typing’ was tested empirically by typing 15 C. jejuni and five C. coli isolates. The association of clonal complexes (CC) to each isolate by ‘Minim typing’ and SNP + binary typing were used to compare the two MLST interrogation schemes. The CCs linked with each C. jejuni isolate were consistent for both methods. Thus, ‘Minim typing’ is an efficient and cost effective method to interrogate MLST genes. However, it is not expected to be independent, or meet the resolution of, sequence based MLST gene interrogation. ‘Minim typing’ in combination with flaA HRM is envisaged to comprise a highly resolving combinatorial typing scheme developed around the HRM platform and is amenable to automation and multiplexing. The genotyping techniques described in this thesis involve the combinatorial interrogation of differentially evolving genetic markers on the unified real-time PCR and HRM platform. They provide high resolution and are simple, cost effective and ideally suited to rapid and high throughput genotyping for these common food-borne pathogens.
Resumo:
Purpose: The aim was to construct and advise on the use of a cost-per-wear model based on contact lens replacement frequency, to form an equitable basis for cost comparison. ---------- Methods: The annual cost of professional fees, contact lenses and solutions when wearing daily, two-weekly and monthly replacement contact lenses is determined in the context of the Australian market for spherical, toric and multifocal prescription types. This annual cost is divided by the number of times lenses are worn per year, resulting in a ‘cost-per-wear’. The model is presented graphically as the cost-per-wear versus the number of times lenses are worn each week for daily replacement and reusable (two-weekly and monthly replacement) lenses.---------- Results: The cost-per-wear for two-weekly and monthly replacement spherical lenses is almost identical but decreases with increasing frequency of wear. The cost-per-wear of daily replacement spherical lenses is lower than for reusable spherical lenses, when worn from one to four days per week but higher when worn six or seven days per week. The point at which the cost-per-wear is virtually the same for all three spherical lens replacement frequencies (approximately AUD$3.00) is five days of lens wear per week. A similar but upwardly displaced (higher cost) pattern is observed for toric lenses, with the cross-over point occurring between three and four days of wear per week (AUD$4.80). Multifocal lenses have the highest price, with cross-over points for daily versus two-weekly replacement lenses at between four and five days of wear per week (AUD$5.00) and for daily versus monthly replacement lenses at three days per week (AUD$5.50).---------- Conclusions: This cost-per-wear model can be used to assist practitioners and patients in making an informed decision in relation to the cost of contact lens wear as one of many considerations that must be taken into account when deciding on the most suitable lens replacement modality.
Resumo:
AC motors are largely used in a wide range of modern systems, from household appliances to automated industry applications such as: ventilations systems, fans, pumps, conveyors and machine tool drives. Inverters are widely used in industrial and commercial applications due to the growing need for speed control in ASD systems. Fast switching transients and the common mode voltage, in interaction with parasitic capacitive couplings, may cause many unwanted problems in the ASD applications. These include shaft voltage and leakage currents. One of the inherent characteristics of Pulse Width Modulation (PWM) techniques is the generation of the common mode voltage, which is defined as the voltage between the electrical neutral of the inverter output and the ground. Shaft voltage can cause bearing currents when it exceeds the amount of breakdown voltage level of the thin lubricant film between the inner and outer rings of the bearing. This phenomenon is the main reason for early bearing failures. A rapid development in power switches technology has lead to a drastic decrement of switching rise and fall times. Because there is considerable capacitance between the stator windings and the frame, there can be a significant capacitive current (ground current escaping to earth through stray capacitors inside a motor) if the common mode voltage has high frequency components. This current leads to noises and Electromagnetic Interferences (EMI) issues in motor drive systems. These problems have been dealt with using a variety of methods which have been reported in the literature. However, cost and maintenance issues have prevented these methods from being widely accepted. Extra cost or rating of the inverter switches is usually the price to pay for such approaches. Thus, the determination of cost-effective techniques for shaft and common mode voltage reduction in ASD systems, with the focus on the first step of the design process, is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. Electrical power generation from renewable energy sources, such as wind energy systems, has become a crucial issue because of environmental problems and a predicted future shortage of traditional energy sources. Thus, Chapter 2 focuses on the shaft voltage analysis of stator-fed induction generators (IG) and Doubly Fed Induction Generators DFIGs in wind turbine applications. This shaft voltage analysis includes: topologies, high frequency modelling, calculation and mitigation techniques. A back-to-back AC-DC-AC converter is investigated in terms of shaft voltage generation in a DFIG. Different topologies of LC filter placement are analysed in an effort to eliminate the shaft voltage. Different capacitive couplings exist in the motor/generator structure and any change in design parameters affects the capacitive couplings. Thus, an appropriate design for AC motors should lead to the smallest possible shaft voltage. Calculation of the shaft voltage based on different capacitive couplings, and an investigation of the effects of different design parameters are discussed in Chapter 3. This is achieved through 2-D and 3-D finite element simulation and experimental analysis. End-winding parameters of the motor are also effective factors in the calculation of the shaft voltage and have not been taken into account in previous reported studies. Calculation of the end-winding capacitances is rather complex because of the diversity of end winding shapes and the complexity of their geometry. A comprehensive analysis of these capacitances has been carried out with 3-D finite element simulations and experimental studies to determine their effective design parameters. These are documented in Chapter 4. Results of this analysis show that, by choosing appropriate design parameters, it is possible to decrease the shaft voltage and resultant bearing current in the primary stage of generator/motor design without using any additional active and passive filter-based techniques. The common mode voltage is defined by a switching pattern and, by using the appropriate pattern; the common mode voltage level can be controlled. Therefore, any PWM pattern which eliminates or minimizes the common mode voltage will be an effective shaft voltage reduction technique. Thus, common mode voltage reduction of a three-phase AC motor supplied with a single-phase diode rectifier is the focus of Chapter 5. The proposed strategy is mainly based on proper utilization of the zero vectors. Multilevel inverters are also used in ASD systems which have more voltage levels and switching states, and can provide more possibilities to reduce common mode voltage. A description of common mode voltage of multilevel inverters is investigated in Chapter 6. Chapter 7 investigates the elimination techniques of the shaft voltage in a DFIG based on the methods presented in the literature by the use of simulation results. However, it could be shown that every solution to reduce the shaft voltage in DFIG systems has its own characteristics, and these have to be taken into account in determining the most effective strategy. Calculation of the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions is discussed in Chapter 8. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.
Resumo:
Background There is little scientific evidence to support the usual practice of providing outpatient rehabilitation to patients undergoing total knee replacement surgery (TKR) immediately after discharge from the orthopaedic ward. It is hypothesised that the lack of clinical benefit is due to the low exercise intensity tolerated at this time, with patients still recovering from the effects of major orthopaedic surgery. The aim of the proposed clinical trial is to investigate the clinical and cost effectiveness of a novel rehabilitation strategy, consisting of an initial home exercise programme followed, approximately six weeks later, by higher intensity outpatient exercise classes. Methods/Design In this multicentre randomised controlled trial, 600 patients undergoing primary TKR will be recruited at the orthopaedic pre-admission clinic of 10 large public and private hospitals in Australia. There will be no change to the medical or rehabilitative care usually provided while the participant is admitted to the orthopaedic ward. After TKR, but prior to discharge from the orthopaedic ward, participants will be randomised to either the novel rehabilitation strategy or usual rehabilitative care as provided by the hospital or recommended by the orthopaedic surgeon. Outcomes assessments will be conducted at baseline (pre-admission clinic) and at 6 weeks, 6 months and 12 months following randomisation. The primary outcomes will be self-reported knee pain and physical function. Secondary outcomes include quality of life and objective measures of physical performance. Health economic data (health sector and community service utilisation, loss of productivity) will be recorded prospectively by participants in a patient diary. This patient cohort will also be followed-up annually for five years for knee pain, physical function and the need or actual incidence of further joint replacement surgery. Discussion The results of this pragmatic clinical trial can be directly implemented into clinical practice. If beneficial, the novel rehabilitation strategy of utilising outpatient exercise classes during a later rehabilitation phase would provide a feasible and potentially cost-effective intervention to optimise the physical well-being of the large number of people undergoing TKR.
Resumo:
Aim: To determine whether telephone support using an evidence-based protocol for chronic heart failure (CHF) management will improve patient outcomes and will reduce hospital readmission rates in patients without access to hospital-based management programs. Methods: The rationale and protocol for a cluster-design randomised controlled trial (RCT) of a semi-automated telephone intervention for the management of CHF, the Chronic Heart-failure Assistance by Telephone (CHAT) Study is described. Care is coordinated by trained cardiac nurses located in Heartline, the national call center of the National Heart Foundation of Australia in partnership with patients’ general practitioners (GPs). Conclusions: The CHAT Study model represents a potentially cost-effective and accessible model for the Australian health system in caring for CHF patients in rural and remote areas. The system of care could also be readily adapted for a range of chronic diseases and health systems. Key words: chronic disease management; chronic heart failure; integrated health care systems; nursing care, rural health services; telemedicine; telenursing
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.
Resumo:
Objective: To assess the cost-effectiveness of screening, isolation and decolonisation strategies in the control of methicillin-resistant Staphylococcus aureus (MRSA) in intensive care units (ICUs). Design: Economic evaluation. Setting: England and Wales. Population: ICU patients. Main outcome measures: Infections, deaths, costs, quality adjusted life years (QALYs), incremental cost-effectiveness ratios for alternative strategies, net monetary benefits (NMBs). Results: All strategies using isolation but not decolonisation improved health outcomes but increased costs. When MRSA prevalence on admission to the ICU was 5% and the willingness to pay per QALY gained was between £20,000 and £30,000, the best such strategy was to isolate only those patients at high risk of carrying MRSA (either pre-emptively or following identification by admission and weekly MRSA screening using chromogenic agar). Universal admission and weekly screening using polymerase chain reaction (PCR)-based MRSA detection coupled with isolation was unlikely to be cost-effective unless prevalence was high (10% colonised with MRSA on admission to the ICU). All decolonisation strategies improved health outcomes and reduced costs. While universal decolonisation (regardless of MRSA status) was the most cost-effective in the short-term, strategies using screening to target MRSA carriers may be preferred due to reduced risk of selecting for resistance. Amongst such targeted strategies, universal admission and weekly PCR screening coupled with decolonisation with nasal mupirocin was the most cost-effective. This finding was robust to ICU size, MRSA admission prevalence, the proportion of patients classified as high-risk, and the precise value of willingness to pay for health benefits. Conclusions: MRSA control strategies that use decolonisation are likely to be cost-saving in an ICU setting provided resistance is lacking, and combining universal PCR-based screening with decolonisation is likely to represent good value for money if untargeted decolonisation is considered unacceptable. In ICUs where decolonisation is not implemented there is insufficient evidence to support universal MRSA screening outside high prevalence settings.