115 resultados para Cosmetic dye
Resumo:
Strategies for improving the photovoltaic performance of dye-sensitized solar cells (DSSCs) are proposed by modifying highly transparent and highly ordered multilayer mesoporous TiO 2 photoanodes through nitrogen-doping and top-coating with a light-scattering layer. The mesoporous TiO 2 photoanodes were fabricated by an evaporation-induced self-assembly method. In regard to the modification methods, the light-scattering layer as a top-coating was proved to be superior to nitrogen-doping in enhancing not only the power conversion efficiency but also the fill factor of DSSCs. The optimized bifunctional photoanode consisted of a 30-layer mesoporous TiO 2 thin film (4.15 μm) and a Degussa P25 light-scattering top-layer (4 μm), which gives rise to a ∼200% higher cell efficiency than for unmodified cells and a fill factor of 0.72. These advantages are attributed to its higher dye adsorption, better light scattering, and faster photon-electron transport. Such a photoanode configuration provides an efficient way to enhance the energy conversion efficiency of DSSCs.
Resumo:
Oriented, single-crystalline, one-dimensional (1D) TiO2 nanostructures would be most desirable for providing fascinating properties and features, such as high electron mobility or quantum confinement effects, high specific surface area, and even high mechanical strength, but achieving these structures has been limited by the availability of synthetic techniques. In this study, a concept for precisely controlling the morphology of 1D TiO2 nanostructures by tuning the hydrolysis rate of titanium precursors is proposed. Based on this innovation, oriented 1D rutile TiO2 nanostructure arrays with continually adjustable morphologies, from nanorods (NRODs) to nanoribbons (NRIBs), and then nanowires (NWs), as well as the transient state morphologies, were successfully synthesized. The proposed method is a significant finding in terms of controlling the morphology of the 1D TiO2 nano-architectures, which leads to significant changes in their band structures. It is worth noting that the synthesized rutile NRIBs and NWs have a comparable bandgap and conduction band edge height to those of the anatase phase, which in turn enhances their photochemical activity. In photovoltaic performance tests, the photoanode constructed from the oriented NRIB arrays possesses not only a high surface area for sufficient dye loading and better light scattering in the visible light range than for the other morphologies, but also a wider bandgap and higher conduction band edge, with more than 200% improvement in power conversion efficiency in dye-sensitized solar cells (DSCs) compared with NROD morphology.
Resumo:
The primary aims of scoliosis surgery are to halt the progression of the deformity, and to reduce its severity (cosmesis). Currently, deformity correction is measured in terms of posterior parameters (Cobb angles and rib hump), even though the cosmetic concern for most patients is anterior chest wall deformity. In this study, we propose a new measure for assessing anterior chest wall deformity and examine the correlation between rib hump and the new measure. 22 sets of CT scans were retrieved from the QUT/Mater Paediatric Spinal Research Database. The Image J software (NIH) was used to manipulate formatted CT scans into 3-dimensional anterior chest wall reconstructions. A ‘chest wall angle’ was then measured in relation to the first sacral vertebral body. The chest wall angle was found to be a reliable tool in the analysis of chest wall deformity. No correlation was found between the new measure and rib hump angle. Since rib hump has been shown to correlate with vertebral rotation on CT, this suggests that there maybe no correlation between anterior and posterior deformity measures. While most surgical procedures will adequately address the coronal imbalance & posterior rib hump elements of scoliosis, they do not reliably alter the anterior chest wall shape. This implies that anterior chest wall deformity is to a large degree an intrinsic deformity, not directly related to vertebral rotation.
Resumo:
Two-stroke outboard boat engines using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. The purpose of this work is to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) operating at 1500 rpm and 3000 rpm. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller. Both the mean axial velocity profile and the mean concentration profile showed self-similarity. Further, the stand deviation growth curve was linear. The effects of propeller speed and dye release location were also investigated.
Resumo:
Cosmetically tinted soft contact lenses are an attractive option for contact lens wearers. Data that we have gathered from annual contact lens fitting surveys demonstrate that those wearing tinted lenses are more likely to be female (4.6% of all soft lenses fitted vs. 1.6% for males; p < 0.0001) and younger (27 11 years vs. 33 13 years for those wearing non-tinted lenses; p < 0.0001). Tinted lenses tend to be worn more on a part-time basis and are replaced less frequently than non-tinted lenses. The decline in fitting tinted lenses over the past 12 years may be due to (a) the current limited availability of tinted lenses in silicone hydrogel materials and daily disposable replacement frequencies, which together represent a significant majority (78%) of new soft lenses fits today, (b) growing concerns among lens wearers and practitioners relating to the risks of complications associated with the wearing of tinted lenses, and (c) reduced promotion of such lenses by the contact lens industry.
Resumo:
Cosmetic enhancement technologies have been subject to extended discussion in sociological literature. Botox, however, seems to have been mostly sidelined in this discussion in favour of more ‘extreme’ forms of cosmetic enhancement, such as those performed under general anaesthetic. In this paper, we suggest the need to further examine Botox as a sociological issue. We do this by highlighting some of the disparities and parallels that Botox shares with the existing literature on cosmetic enhancement technologies.
Resumo:
Divining the Martyr is a project developed in order to achieve the Master of Arts (Research) degree. This is composed of 70% creative work displayed in an exhibition and 30% written work contained in this exegesis. The project was developed through practice-led research in order to answer the question “In what ways can creative practice synthesize and illuminate issues of martyrdom in contemporary makeover culture?” The question is answered using a postmodern framework about martyrdom as it is manifested in contemporary society. The themes analyzed throughout this exegesis relate to concepts about sainthood and makeover culture combined with actual examples of tragic cases of cosmetic procedures. The outcomes of this project fused three elements: Mexican cultural history, Mexican (Catholic) religious traditions, and cosmetic makeover surgery. The final outcomes were a series of installations integrating contemporary and traditional interdisciplinary media, such as sound, light, x-ray technology, sculpture, video and aspects of performance. These creative works complement each other in their presentation and concept, promoting an original contribution to the theme of contemporary martyrdom in makeover culture.
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Resumo:
Background Interdialytic weight gain (IDWG) can be reduced by lowering the dialysate sodium concentration ([Na]) in haemodialysis patients. It has been assumed that this is because thirst is reduced, although this has been difficult to prove. We compared thirst patterns in stable haemodialysis patients with high and low IDWG using a novel technique and compared the effect of low sodium dialysis (LSD) with normal sodium dialysis (NSD). Methods Eight patients with initial high IDWG and seven with low IDWG completed hourly visual analogue ratings of thirst using a modified palmtop computer during the dialysis day and the interdialytic day. The dialysate [Na] was progressively reduced by up to 5 mmol/l over five treatments. Dialysis continued at the lowest attained [Na] for 2 weeks and the measurements were repeated. The dialysate [Na] then returned to baseline and the process was repeated. Results Baseline interdialytic day mean thirst was higher than the dialysis day mean for the high IDWG group (49.9±14.0 vs 36.2±16.6) and higher than the low weight gain group (49.9±14.0 vs 34.1±14.6). This trend persisted on LSD, but there was a pronounced increase in post-dialysis thirst scores for both groups (high IDWG: 46±13 vs 30±21; low IDWG: 48±24 vs 33±18). The high IDWG group demonstrated lower IDWG during LSD than NSD (2.23±0.98 vs 2.86±0.38 kg; P<0.05). Conclusions Our results indicate that patients with high IDWG experience more intense feelings of thirst on the interdialytic day. LSD reduces their IDWG, but paradoxically increases thirst in the immediate post-dialysis period.
Resumo:
Background Some dialysis patients fail to comply with their fluid restriction causing problems due to volume overload. These patients sometimes blame excessive thirst. There has been little work in this area and no work documenting polydipsia among peritoneal dialysis (PD) patients. Methods We measured motivation to drink and fluid consumption in 46 haemodialysis patients (HD), 39 PD patients and 42 healthy controls (HC) using a modified palmtop computer to collect visual analogue scores at hourly intervals. Results Mean thirst scores were markedly depressed on the dialysis day (day 1) for HD (P<0.0001). The profile for day 2 was similar to that of HC. PD generated consistently higher scores than HD day 1 and HC (P = 0.01 vs. HC and P<0.0001 vs HD day 1). Reported mean daily water consumption was similar for HD and PD with both significantly less than HC (P<0.001 for both). However, measured fluid losses were similar for PD and HC whilst HD were lower (P<0.001 for both) suggesting that the PD group may have underestimated their fluid intake. Conclusion Our results indicate that HD causes a protracted period of reduced thirst but that the population's thirst perception is similar to HC on the interdialytic day despite a reduced fluid intake. In contrast, the PD group recorded high thirst scores throughout the day and were apparently less compliant with their fluid restriction. This is potentially important because the volume status of PD patients influences their survival.
Resumo:
Background We have used serial visual analogue scores to demonstrate disturbances of the appetite profile in dialysis patients. This is potentially important as dialysis patients are prone to malnutrition yet have a lower nutrient intake than controls. Appetite disturbance may be influenced by accumulation of appetite inhibitors such as leptin and cholecystokinin (CCK) in dialysis patients. Methods Fasting blood samples were drawn from 43 controls, 50 haemodialysis (HD) and 39 peritoneal dialysis (PD) patients to measure leptin and CCK. Hunger and fullness scores were derived from profiles compiled using hourly visual analogue scores. Nutrient intake was derived from 3 day dietary records. Results Fasting CCK was elevated for PD (6.73 ± 4.42 ng/l vs control 4.99 ± 2.23 ng/l, P < 0.05; vs HD 4.43 ± 2.15 ng/l, P < 0.01). Fasting CCK correlated with the variability of the hunger (r = 0.426, P = 0.01) and fullness (r = 0.52, P = 0.002) scores for PD. There was a notable relationship with the increase in fullness after lunch for PD (r = 0.455, P = 0.006). When well nourished PD patients were compared with their malnourished counterparts, CCK was higher in the malnourished group (P = 0.004). Leptin levels were higher for the dialysis patients than controls (HD and PD, P < 0.001) with pronounced hyperleptinaemia evident in some PD patients. Control leptin levels demonstrated correlation with fullness scores (e.g. peak fullness, r = 0.45, P = 0.007) but the dialysis patients did not. PD nutrient intake (energy and protein intake, r = -0.56, P < 0.0001) demonstrated significant negative correlation with leptin. Conclusion Increased CCK levels appear to influence fullness and hunger perception in PD patients and thus may contribute to malnutrition. Leptin does not appear to affect perceived appetite in dialysis patients but it may influence nutrient intake in PD patients via central feeding centres.
Resumo:
Objective: To determine the effect of zinc supplementation on taste perception in a group of hemodialysis patients. Design and Setting: Double-blind randomized placebo-controlled study in a teaching hospital dialysis unit. Patients: Fifteen stable hemodialysis patients randomized to placebo (6 male, 2 female; median age, 67; range, 30 to 72 years) or treatment (5 male, 2 female; median age, 60; range, 31 to 76 years). Intervention: Treatment group received zinc sulfate 220 mg per day for 6 weeks, and the placebo group received an apparently identical dummy pill. Main Outcome Measures: Taste scores by visual analogue scales, normalized protein catabolic rate and plasma, whole blood and red cell zinc levels. Results: At baseline, sweet and salt tastes were identified correctly by both groups. Sour was often confused with salt. Sour solutions of different concentrations were not distinguishable. Taste scores were not different after 6 weeks for either group. There was no significant increment in zinc levels or normalized protein catabolic rate for either group. Conclusion: We found a disturbance of taste perception in hemodialysis patients, particularly for the sour modality, which was not corrected by this regimen of zinc supplementation. These results cast doubts on the conclusions of earlier studies that indicated an improvement in taste after zinc supplementation.
Resumo:
OBJECTIVE Malnutrition is common among peritoneal dialysis (PD) patients. Reduced nutrient intake contributes to this. It has long been assumed that this reflects disturbed appetite. We set out to define the appetite profiles of a group of PD patients using a novel technique. DESIGN Prospective, cross-sectional comparison of PD patients versus controls. SETTING Teaching hospital dialysis unit. PATIENTS 39 PD patients and 42 healthy controls. INTERVENTION Visual analog ratings were recorded at hourly intervals to generate daily profiles for hunger and fullness. Summary statistics were generated to compare the groups. Food intake was measured using 3-day dietary records. MAIN OUTCOME MEASURES Hunger and fullness profiles. Derived hunger and fullness scores. RESULTS Controls demonstrated peaks of hunger before mealtimes, with fullness scores peaking after meals. The PD profiles had much reduced premeal hunger peaks. A postmeal reduction in hunger was evident, but the rest of the trace was flat. The PD fullness profile was also flatter than in the controls. Mean scores were similar despite the marked discrepancy in the profiles. The PD group had lower peak hunger and less diurnal variability in their hunger scores. They also demonstrated much less change in fullness rating around mealtimes, while the mean and peak fullness scores were little different. The reported nutrient intake was significantly lower for PD. CONCLUSION The data suggest that PD patients normalize their mean appetite perception at a lower level of nutrient intake than controls, suggesting that patient-reported appetite may be misleading in clinical practice. There is a loss of the usual daily variation for the PD group, which may contribute to their reduced food intake. The technique described here could be used to assess the impact of interventions upon the abnormal PD appetite profile.
Resumo:
This paper reviews some aspects of calcium phosphate chemistry since phosphate in juice is an important parameter in all sugar juice clarification systems. It uses basic concepts to try and explain the observed differences in clarification performance obtained with various liming techniques. The paper also examines the current colorimetric method used for the determination of phosphate in sugar juice. In this method, a phosphomolybdate blue complex formed due to the addition of a dye is measured at 660 nm. Unfortunately, at this wavelength there is interference of the colour arising from within the juice and results in the underestimation of the amount of soluble inorganic phosphate content of juice. It is suggested that phosphate analysis be conducted at the higher wavelength of 875 nm where the interference of the juice colour is minimised.