74 resultados para Correa de Rojas, Carola
Resumo:
This report describes the development of a whole of organization framework for obtaining client feedback for the Queensland Program of Assistance to Survivors of Torture and Trauma (QPASTT)
Resumo:
This report describes the evaluation of the Refugee Antenatal Clinic (Mater Mothers' Hospital, Brisbane) which was established in November 2008
Resumo:
The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria Ã- ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×-39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.
Resumo:
Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.
Resumo:
Research involving resettled refugees raises methodological and ethical complexities. These complexities typically emerge within cross-sectional research that focuses on refugee experiences at a specific point in time. Given the long term and dynamic nature of refugee settlement, longitudinal research is valuable, yet it raises distinct complexities within the research process. This article focuses on the methodological and ethical insights that emerged in a longitudinal study of settlement and wellbeing with a cohort of young people from refugee backgrounds in Australia. It considers: engagement and retention of a cohort over time; the need to adapt research tools to changing settlement contexts and life stages; participants’ experiences of long-term involvement in the study; and the challenge of timely translation of findings into evidence for policy and practice. The article contributes to a growing understanding of the practical, ethical and epistemological challenges and opportunities presented by longitudinal research, in this case, with resettled refugee background youth.
Resumo:
What can we learn from people from refugee backgrounds who have been affected by an environmental disaster? This paper presents the first year findings of a study that is investigating the impact of the 2011 Queensland floods on a cohort of men from refugee backgrounds living in Brisbane and the Toowoom- ba–Gatton region of Southeast Queensland. Between 2008 and 2010, the SettleMEN study yielded pre-disaster measures of health and settlement among 233 refugee men. The current 2012−2013 follow-up study offers a rare opportunity to investigate and describe the impact of an environmental disaster on the health and wellbeing of a group of resettled refugee men who were affected by the 2011 Queensland floods. Using a mixed-method approach and a peer interviewer model, this paper reports on the exposure to and impact of the floods on the first 100 respondents who were interviewed between September 2012 and March 2013. Overall, we have found that the floods had a considerable economic and psychosocial impact on this group of men, their families and communities in terms of being forced to evacuate their homes, work disrup- tion, loss of income and personal belongings, and emotional distress. Many of these men reported that their previous refugee experience helped them to cope better during and after the floods, and for some, providing assistance to others during the floods impacted positively on their relationship with their neighbours. These findings challenge the Western deficits model that defines former refugees as traumatised victims. Refugee people’s strengths and capabilities should be taken into consideration when developing disaster response strategies at the neighbourhood and community levels.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are diarrheagenic pathotypes of E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. While certain EHEC and EPEC virulence mechanisms have been extensively studied, the factors that mediate host colonization remain to be properly defined. Previously, we identified four genes (ehaA, ehaB, ehaC, and ehaD) from the prototypic EHEC strain EDL933 that encode for proteins that belong to the autotransporter (AT) family. Here we have examined the prevalence of these genes, as well as several other AT-encoding genes, in a collection of EHEC and EPEC strains. We show that the complement of AT-encoding genes in EHEC and EPEC strains is variable, with some AT-encoding genes being highly prevalent. One previously uncharacterized AT-encoding gene, which we have termed ehaJ, was identified in 12/44 (27%) of EHEC and 2/20 (10%) of EPEC strains. The ehaJ gene lies immediately adjacent to a gene encoding a putative glycosyltransferase (referred to as egtA). Western blot analysis using an EhaJ-specific antibody indicated that EhaJ is glycosylated by EgtA. Expression of EhaJ in a recombinant E. coli strain, revealed EhaJ is located at the cell surface and in the presence of the egtA glycosyltransferase gene mediates strong biofilm formation in microtiter plate and flow cell assays. EhaJ also mediated adherence to a range of extracellular matrix proteins, however this occurred independent of glycosylation. We also demonstrate that EhaJ is expressed in a wild-type EPEC strain following in vitro growth. However, deletion of ehaJ did not significantly alter its adherence or biofilm properties. In summary, EhaJ is a new glycosylated AT protein from EPEC and EHEC. Further studies are required to elucidate the function of EhaJ in colonization and virulence.
Resumo:
Measuring gases for environmental monitoring is a demanding task that requires long periods of observation and large numbers of sensors. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) currently represent the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialized gas sensing systems. This paper presents the development and integration of a WSN and an UAV powered by solar energy in order to enhance their functionality and broader their applications. A gas sensing system implementing nanostructured metal oxide (MOX) and non-dispersive infrared sensors was developed to measure concentrations of CH4 and CO2. Laboratory, bench and field testing results demonstrate the capability of UAV to capture, analyze and geo-locate a gas sample during flight operations. The field testing integrated ground sensor nodes and the UAV to measure CO2 concentration at ground and low aerial altitudes, simultaneously. Data collected during the mission was transmitted in real time to a central node for analysis and 3D mapping of the target gas. The results highlights the accomplishment of the first flight mission of a solar powered UAV equipped with a CO2 sensing system integrated with a WSN. The system provides an effective 3D monitoring and can be used in a wide range of environmental applications such as agriculture, bushfires, mining studies, zoology and botanical studies using a ubiquitous low cost technology.
Resumo:
This report presents the findings from a study of the financial impact of work-integrated learning commonly referred to as 'placement' among social work and human services students. Based on a survey of 214 respondants, 14 in-depth interviews and two focus groups, the findings indicate that two thirds of the surveyed group felt tired and anxious about their experience of balancing paid work and placement, with 2 in 5 reporting their learning experience was compromised as a result. The significant implications and potential solutions are also discussed.
Resumo:
This qualitative study investigated the drivers and determinants of irregular maritime migration among 17 protection visa holders who arrived in Australia as unaccompanied asylum-seeking minors. Semi-structured interviews were also conducted with eight non-government service providers working with unaccompanied minors in the Greater Brisbane area.
Resumo:
Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10−14, odds ratio = 0.86, 95% confidence interval = 0.82–0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.
Factors affecting antihypertensive medications adherence among hypertensive patients in Saudi Arabia
Resumo:
Hypertension is a health problem that has increasing prevalence worldwide. Antihypertensive medications are the key for achieving controlled blood pressure. Little is known about predictors of antihypertensive medications adherence in Saudi Arabia. This is a cross-sectional study of 308 participants from a general hospital in Jeddah city, Saudi Arabia conducted between July 2013 and February 2014. Out of the 308 participants, the results showed that 27.9% were classified as perfect adherents and 72.1% were classified as non-perfect adherents to antihypertensive medications. Significant predictors of non-perfect antihypertensive medications in this study were having non-formal education (p=0.031, OR=2.3, 95%CI = [1.82-5]), reporting a poor relationship with physicians (p=0.004, OR=2.25, 95%CI= [1.29-3.9]), and having no co-morbidities (p=0.048, OR=1.86, 95%CI [1.00-3.46]). The outcome of this study highlights the need for policies and interventions that enhance the level of formal education at a population level and improve physician-patient relationships in health care settings.
Resumo:
This short report assesses the predictors of subjective health and happiness among a cohort of refugee youth over their first eight years in Australia. Five waves of data collection were conducted between 2004 (n=120) and 2012–13 (n=51) using mixed methods. Previous schooling,self-esteem, moving house in the previous year, a supportive social environment, stronger ethnic identity and perceived discrimination were significant predictors of wellbeing after adjusting for demographic and pre-migration factors. When compared with a previous analysis of this cohort over their first three years of settlement, experiences of social exclusion still have a significant impact on wellbeing eight years after arriving in Australia. This study contributes to mounting evidence in support of policies that discourage discrimination and promote social inclusion and cultural diversity and which underpin the wellbeing of resettled refugee youth.
Resumo:
Although “refugees” are frequently represented in visual media, it is predominantly as the central subject matter and rarely are they positioned as the photographers of their own journeys. In this article we present photographic images that have been taken by refugee background youth portraying their experiences of the first years of settlement in Australia. We consider how, in our longitudinal research conducted with 120 refugee background youth, visual materials can provide equally important yet different insights in comparison to written or spoken narratives on the experiences of refugee settlement. Through an examination of over 1,000 photos taken by these youth, we explore the ways in which they portrayed their early experiences of external suburban settlement environments and their depictions of interior spaces and home-making practices. We discuss how these visual insights capture an alternative way of seeing the experiences of becoming at home as the youth become emplaced post-resettlement in Australia. We argue that the photographs taken by these refugee background youth illustrate how visual methods and materials can provide equally important but often overlooked insights into early settlement experiences. Importantly, the photographic images offer a way of portraying the people, places and sentiments that are central to the everyday lives of refugee background youths in ways that oral and written narratives can not.
Resumo:
Vertebral fracture risk is a heritable complex trait. The aim of this study was to identify genetic susceptibility factors for osteoporotic vertebral fractures applying a genome-wide association study (GWAS) approach. The GWAS discovery was based on the Rotterdam Study, a population-based study of elderly Dutch individuals aged >55years; and comprising 329 cases and 2666 controls with radiographic scoring (McCloskey-Kanis) and genetic data. Replication of one top-associated SNP was pursued by de-novo genotyping of 15 independent studies across Europe, the United States, and Australia and one Asian study. Radiographic vertebral fracture assessment was performed using McCloskey-Kanis or Genant semi-quantitative definitions. SNPs were analyzed in relation to vertebral fracture using logistic regression models corrected for age and sex. Fixed effects inverse variance and Han-Eskin alternative random effects meta-analyses were applied. Genome-wide significance was set at p<5×10-8. In the discovery, a SNP (rs11645938) on chromosome 16q24 was associated with the risk for vertebral fractures at p=4.6×10-8. However, the association was not significant across 5720 cases and 21,791 controls from 14 studies. Fixed-effects meta-analysis summary estimate was 1.06 (95% CI: 0.98-1.14; p=0.17), displaying high degree of heterogeneity (I2=57%; Qhet p=0.0006). Under Han-Eskin alternative random effects model the summary effect was significant (p=0.0005). The SNP maps to a region previously found associated with lumbar spine bone mineral density (LS-BMD) in two large meta-analyses from the GEFOS consortium. A false positive association in the GWAS discovery cannot be excluded, yet, the low-powered setting of the discovery and replication settings (appropriate to identify risk effect size >1.25) may still be consistent with an effect size <1.10, more of the type expected in complex traits. Larger effort in studies with standardized phenotype definitions is needed to confirm or reject the involvement of this locus on the risk for vertebral fractures.