679 resultados para Construction repair
Resumo:
The rising problems associated with construction such as decreasing quality and productivity, labour shortages, occupational safety, and inferior working conditions have opened the possibility of more revolutionary solutions within the industry. One prospective option is in the implementation of innovative technologies such as automation and robotics, which has the potential to improve the industry in terms of productivity, safety and quality. The construction work site could, theoretically, be contained in a safer environment, with more efficient execution of the work, greater consistency of the outcome and higher level of control over the production process. By identifying the barriers to construction automation and robotics implementation in construction, and investigating ways in which to overcome them, contributions could be made in terms of better understanding and facilitating, where relevant, greater use of these technologies in the construction industry so as to promote its efficiency. This research aims to ascertain and explain the barriers to construction automation and robotics implementation by exploring and establishing the relationship between characteristics of the construction industry and attributes of existing construction automation and robotics technologies to level of usage and implementation in three selected countries; Japan, Australia and Malaysia. These three countries were chosen as their construction industry characteristics provide contrast in terms of culture, gross domestic product, technology application, organisational structure and labour policies. This research uses a mixed method approach of gathering data, both quantitative and qualitative, by employing a questionnaire survey and an interview schedule; using a wide range of sample from management through to on-site users, working in a range of small (less than AUD0.2million) to large companies (more than AUD500million), and involved in a broad range of business types and construction sectors. Detailed quantitative (statistical) and qualitative (content) data analysis is performed to provide a set of descriptions, relationships, and differences. The statistical tests selected for use include cross-tabulations, bivariate and multivariate analysis for investigating possible relationships between variables; and Kruskal-Wallis and Mann Whitney U test of independent samples for hypothesis testing and inferring the research sample to the construction industry population. Findings and conclusions arising from the research work which include the ranking schemes produced for four key areas of, the construction attributes on level of usage; barrier variables; differing levels of usage between countries; and future trends, have established a number of potential areas that could impact the level of implementation both globally and for individual countries.
Resumo:
The construction industry is dynamic in nature. The concept of project success has remained ambiguously defined in the construction industry. Project success means different things to different people. While some authors consider time, cost and quality as the predominant targets, others suggest that success is something more complex. The aim of this report is to develop a framework for measuring success of construction projects. A range of Key Performance Indicators (KPIs), measured both objectively and subjectively is developed. The identification of KPIs helps set a benchmark for measuring the performance of a construction project and provides significant insights into developing a general and comprehensive base for further research.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
This document provides an overview of the differences and similarities in the objectives and implementation frameworks of the training and employment policies applying to public construction projects in Western Australia and Queensland. The material in the document clearly demonstrates the extent to which approaches to the pursuit of training objectives in particular have been informed by the experiences of other jurisdictions. The two State governments now have very similar approaches to the promotion of training with the WA government basing a good part of its policy approach on the “Queensland model”. As the two States share many similar economic and other characteristics, and have very similar social and economic goals, this similarity is to be expected. The capacity to benefit from the experiences of other jurisdictions is to be welcomed. The similarity in policy approach also suggests a potential for ongoing collaborations between the State governments on research aimed at further improving training and employment outcomes via public construction projects.
Resumo:
Construction sector application of Lead Indicators generally and Positive Performance Indicators (PPIs) particularly, are largely seen by the sector as not providing generalizable indicators of safety effectiveness. Similarly, safety culture is often cited as an essential factor in improving safety performance, yet there is no known reliable way of measuring safety culture. This paper proposes that the accurate measurement of safety effectiveness and safety culture is a requirement for assessing safe behaviours, safety knowledge, effective communication and safety performance. Currently there are no standard national or international safety effectiveness indicators (SEIs) that are accepted by the construction industry. The challenge is that quantitative survey instruments developed for measuring safety culture and/ or safety climate are inherently flawed methodologically and do not produce reliable and representative data concerning attitudes to safety. Measures that combine quantitative and qualitative components are needed to provide a clear utility for safety effectiveness indicators.
Resumo:
The report presents a methodology for whole of life cycle cost analysis of alternative treatment options for bridge structures, which require rehabilitation. The methodology has been developed after a review of current methods and establishing that a life cycle analysis based on a probabilistic risk approach has many advantages including the essential ability to consider variability of input parameters. The input parameters for the analysis are identified as initial cost, maintenance, monitoring and repair cost, user cost and failure cost. The methodology utilizes the advanced simulation technique of Monte Carlo simulation to combine a number of probability distributions to establish the distribution of whole of life cycle cost. In performing the simulation, the need for a powerful software package, which would work with spreadsheet program, has been identified. After exploring several products on the market, @RISK software has been selected for the simulation. In conclusion, the report presents a typical decision making scenario considering two alternative treatment options.
Resumo:
This report is an attempt to present the current state of product and process modelling in the building industry in general, and in construction planning and scheduling in particular. This report endeavours to describe what has been achieved by the Construction Planning Workbench (CPW) project.
Resumo:
This report reviews the most recent literature on construction innovation with the aim of highlighting the primary influences on innovation in the building and construction industry.