193 resultados para Condition Based Maintenance (CBM)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wellness is now seen as central to redefining the National Health agenda. There is growing evidence that contact with nature and physical activity in nature has considerable positive effects on human health. At the most basic level humanity is reliant on the natural world for resources such as air and water. However, a growing body of research is finding that beyond this fundamental relationship exposure to the non-human natural world can also positively enhance perceptions of physiological, emotional, psychological and spiritual health in ways that cannot be satisfied by alternate means. Theoretical explanations for this have posited that non-human nature might 1) restore mental fatigue, 2) trigger deep reflections, 3) provide an opportunity for nurturing and 4) rekindle innate connections. In this paper the authors show how human wellness is strongly connected to their relationship with the natural world. This paper points to how non-human nature could be better utilised for enhancing human health and wellness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a novel algorithm for localization during navigation that performs matching over local image sequences. Instead of calculating the single location most likely to correspond to a current visual scene, the approach finds candidate matching locations within every section (subroute) of all learned routes. Through this approach, we reduce the demands upon the image processing front-end, requiring it to only be able to correctly pick the best matching image from within a short local image sequence, rather than globally. We applied this algorithm to a challenging downhill mountainbiking visual dataset where there was significant perceptual or environment change between repeated traverses of the environment, and compared performance to applying the feature-based algorithm FAB-MAP. The results demonstrate the potential for localization using visual sequences, even when there are no visual features that can be reliably detected.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To assess and improve their practices, and thus ensure the future excellence of the Texas highway system, the Texas Department of Transportation (TxDOT) sought a forum in which experts from other State Departments of Transportation could evaluate the TxDOT maintenance program and practices based on their expertise. To meet this need, a Peer State Review of TxDOT Maintenance Practices project was organized and conducted by the Center for Transportation Research (CTR) at The University of Texas at Austin. CTR researchers, along with TxDOT staff, conducted a workshop to present TxDOT’s maintenance practices to the visiting peer reviewers and invite their feedback. Directors of maintenance from six different states—California, Kansas, Georgia, Missouri, North Carolina, and Washington—participated in the workshop. CTR and TxDOT worked together to design a questionnaire with 15 key questions to capture the peers’ opinions on maintenance program and practices. This paper compiles and summarizes this information. The examination results suggested that TxDOT should use a more state-wide approach to funding and planning, in addition to funding and planning for each district separately. Additionally, the peers recommended that criteria such as condition and level of service of the roadways be given greater weight in the funding allocation than lane miles or vehicle miles traveled (VMT). The Peer Reviewers also determined that TxDOT maintenance employee experience and communications were strong assets. Additional strengths included the willingness of TxDOT to invite peer reviews of their practices and a willingness to consider opportunities for improvement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Maintenance Test Section Survey (MTSS) was conducted as part of a Peer State Review of the Texas Maintenance Program conducted October 5–7, 2010. The purpose of the MTSS was to conduct a field review of 34 highway test sections and obtain participants’ opinions about pavement, roadside, and maintenance conditions. The goal was to cross reference or benchmark TxDOT’s maintenance practices based on practices used by selected peer states. Representatives from six peer states (California, Georgia, Kansas, Missouri, North Carolina, and Washington) were invited to Austin to attend a 3-day Peer State Review of TxDOT Maintenance Practices Workshop and to participate in a field survey of a number of pre-selected one-mile roadway sections. It should be emphasized that the objective of the survey was not to evaluate and grade or score TxDOT’s road network but rather to determine whether the selected roadway sections met acceptable standards of service as perceived by Directors of Maintenance or senior maintenance managers from the peer states...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optimal Asset Maintenance decisions are imperative for efficient asset management. Decision Support Systems are often used to help asset managers make maintenance decisions, but high quality decision support must be based on sound decision-making principles. For long-lived assets, a successful Asset Maintenance decision-making process must effectively handle multiple time scales. For example, high-level strategic plans are normally made for periods of years, while daily operational decisions may need to be made within a space of mere minutes. When making strategic decisions, one usually has the luxury of time to explore alternatives, whereas routine operational decisions must often be made with no time for contemplation. In this paper, we present an innovative, flexible decision-making process model which distinguishes meta-level decision making, i.e., deciding how to make decisions, from the information gathering and analysis steps required to make the decisions themselves. The new model can accommodate various decision types. Three industrial case studies are given to demonstrate its applicability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Preventive Maintenance (PM) is often applied to improve the reliability of production lines. A Split System Approach (SSA) based methodology is presented to assist in making optimal PM decisions for serial production lines. The methodology treats a production line as a complex series system with multiple (imperfect) PM actions over multiple intervals. The conditional and overall reliability of the entire production line over these multiple PM intervals are hierarchically calculated using SSA, and provide a foundation for cost analysis. Both risk-related cost and maintenance-related cost are factored into the methodology as either deterministic or random variables. This SSA based methodology enables Asset Management (AM) decisions to be optimised considering a variety of factors including failure probability, failure cost, maintenance cost, PM performance, and the type of PM strategy. The application of this new methodology and an evaluation of the effects of these factors on PM decisions are demonstrated using an example. The results of this work show that the performance of a PM strategy can be measured by its Total Expected Cost Index (TECI). The optimal PM interval is dependent on TECI, PM performance and types of PM strategies. These factors are interrelated. Generally, it was found that a trade-off between reliability and the number of PM actions needs to be made so that one can minimise Total Expected Cost (TEC) for asset maintenance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fault identification in industrial machine is a topic of major importance under engineering point of view. In fact, the possibility to identify not only the type, but also the severity and the position of a fault occurred along a shaft-line allows quick maintenance and shorten the downtime. This is really important in the power generation industry where the units are often of several tenths of meters long and where the rotors are enclosed by heavy and pressure-sealed casings. In this paper, an industrial experimental case is presented related to the identification of the unbalance on a large size steam turbine of about 1.3 GW, belonging to a nuclear power plant. The case history is analyzed by considering the vibrations measured by the condition monitoring system of the unit. A model-based method in the frequency domain, developed by the authors, is introduced in detail and it is then used to identify the position of the fault and its severity along the shaft-line. The complete model of the unit (rotor – modeled by means of finite elements, bearings – modeled by linearized damping and stiffness coefficients and foundation – modeled by means of pedestals) is analyzed and discussed before being used for the fault identification. The assessment of the actual fault was done by inspection during a scheduled maintenance and excellent correspondence was found with the identified one by means of authors’ proposed method. Finally a complete discussion is presented about the effectiveness of the method, even in presence of a not fine tuned machine model and considering only few measuring planes for the machine vibration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Chronic respiratory illnesses are the most common group of childhood chronic health conditions and are overrepresented in socially isolated groups. Objective To conduct a randomized controlled pilot trial to evaluate the efficacy of Breathe Easier Online (BEO), an Internet-based problem-solving program with minimal facilitator involvement to improve psychosocial well-being in children and adolescents with a chronic respiratory condition. Methods We randomly assigned 42 socially isolated children and adolescents (18 males), aged between 10 and 17 years to either a BEO (final n = 19) or a wait-list control (final n = 20) condition. In total, 3 participants (2 from BEO and 1 from control) did not complete the intervention. Psychosocial well-being was operationalized through self-reported scores on depression symptoms and social problem solving. Secondary outcome measures included self-reported attitudes toward their illness and spirometry results. Paper-and-pencil questionnaires were completed at the hospital when participants attended a briefing session at baseline (time 1) and in their homes after the intervention for the BEO group or a matched 9-week time period for the wait-list group (time 2). Results The two groups were comparable at baseline across all demographic measures (all F < 1). For the primary outcome measures, there were no significant group differences on depression (P = .17) or social problem solving (P = .61). However, following the online intervention, those in the BEO group reported significantly lower depression (P = .04), less impulsive/careless problem solving (P = .01), and an improvement in positive attitude toward their illness (P = .04) compared with baseline. The wait-list group did not show these differences. Children in the BEO group and their parents rated the online modules very favorably. Conclusions Although there were no significant group differences on primary outcome measures, our pilot data provide tentative support for the feasibility (acceptability and user satisfaction) and initial efficacy of an Internet-based intervention for improving well-being in children and adolescents with a chronic respiratory condition. Trial registration Australian New Zealand Clinical Trials Registry number: ACTRN12610000214033;

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vision-based place recognition involves recognising familiar places despite changes in environmental conditions or camera viewpoint (pose). Existing training-free methods exhibit excellent invariance to either of these challenges, but not both simultaneously. In this paper, we present a technique for condition-invariant place recognition across large lateral platform pose variance for vehicles or robots travelling along routes. Our approach combines sideways facing cameras with a new multi-scale image comparison technique that generates synthetic views for input into the condition-invariant Sequence Matching Across Route Traversals (SMART) algorithm. We evaluate the system’s performance on multi-lane roads in two different environments across day-night cycles. In the extreme case of day-night place recognition across the entire width of a four-lane-plus-median-strip highway, we demonstrate performance of up to 44% recall at 100% precision, where current state-of-the-art fails.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a vision-only system for place recognition in environments that are tra- versed at different times of day, when chang- ing conditions drastically affect visual appear- ance, and at different speeds, where places aren’t visited at a consistent linear rate. The ma- jor contribution is the removal of wheel-based odometry from the previously presented algo- rithm (SMART), allowing the technique to op- erate on any camera-based device; in our case a mobile phone. While we show that the di- rect application of visual odometry to our night- time datasets does not achieve a level of perfor- mance typically needed, the VO requirements of SMART are orthogonal to typical usage: firstly only the magnitude of the velocity is required, and secondly the calculated velocity signal only needs to be repeatable in any one part of the environment over day and night cycles, but not necessarily globally consistent. Our results show that the smoothing effect of motion constraints is highly beneficial for achieving a locally consis- tent, lighting-independent velocity estimate. We also show that the advantage of our patch-based technique used previously for frame recogni- tion, surprisingly, does not transfer to VO, where SIFT demonstrates equally good performance. Nevertheless, we present the SMART system us- ing only vision, which performs sequence-base place recognition in extreme low-light condi- tions where standard 6-DOF VO fails and that improves place recognition performance over odometry-less benchmarks, approaching that of wheel odometry.