128 resultados para Coastal Tourism
Resumo:
Mobile sensor platforms such as Autonomous Underwater Vehicles (AUVs) and robotic surface vessels, combined with static moored sensors compose a diverse sensor network that is able to provide macroscopic environmental analysis tool for ocean researchers. Working as a cohesive networked unit, the static buoys are always online, and provide insight as to the time and locations where a federated, mobile robot team should be deployed to effectively perform large scale spatiotemporal sampling on demand. Such a system can provide pertinent in situ measurements to marine biologists whom can then advise policy makers on critical environmental issues. This poster presents recent field deployment activity of AUVs demonstrating the effectiveness of our embedded communication network infrastructure throughout southern California coastal waters. We also report on progress towards real-time, web-streaming data from the multiple sampling locations and mobile sensor platforms. Static monitoring sites included in this presentation detail the network nodes positioned at Redondo Beach and Marina Del Ray. One of the deployed mobile sensors highlighted here are autonomous Slocum gliders. These nodes operate in the open ocean for periods as long as one month. The gliders are connected to the network via a Freewave radio modem network composed of multiple coastal base-stations. This increases the efficiency of deployment missions by reducing operational expenses via reduced reliability on satellite phones for communication, as well as increasing the rate and amount of data that can be transferred. Another mobile sensor platform presented in this study are the autonomous robotic boats. These platforms are utilized for harbor and littoral zone studies, and are capable of performing multi-robot coordination while observing known communication constraints. All of these pieces fit together to present an overview of ongoing collaborative work to develop an autonomous, region-wide, coastal environmental observation and monitoring sensor network.
Resumo:
International practice-led design research in landscape architecture has identified the need for addressing the loss of biodiversity in urban environments. China has lost much of its biodiversity in rural and urban environments over thousands of years. However some Chinese cities have attempted to conserve what remains and enhance existing vegetation communities in isolated pockets. Island biogeography has been used as the basis for planning and designing landscapes in Australia and North America but not as yet in China, as far as we know. A gap in landscape design knowledge exists regarding how to apply landscape ecology concepts to urban islands of remaining biodiversity being developed for heavy Chinese domestic tourism impacts in the future. This project responded to the demands for harbour-side tourism opportunities in Xiamen City, Fujian Province, by proposing a range of eco-design innovations using concepts of patch, edge and interior to interconnect people and nature in a Chinese setting.
Resumo:
Global warming is already threatening many animal and plant communities worldwide, however, the effect of climate change on bat populations is poorly known. Understanding the factors influencing the survival of bats is crucial to their conservation, and this cannot be achieved solely by modern ecological studies. Palaeoecological investigations provide a perspective over a much longer temporal scale, allowing the understanding of the dynamic patterns that shaped the distribution of modern taxa. In this study twelve microchiropteran fossil assemblages from Mount Etna, central-eastern Queensland, ranging in age from more than 500,000 years to the present day, were investigated. The aim was to assess the responses of insectivorous bats to Quaternary environmental changes, including climatic fluctuations and recent anthropogenic impacts. In particular, this investigation focussed on the effects of increasing late Pleistocene aridity, the subsequent retraction of rainforest habitat, and the impact of cave mining following European settlement at Mount Etna. A thorough examination of the dental morphology of all available extant Australian bat taxa was conducted in order to identify the fossil taxa prior to their analysis in term of species richness and composition. This detailed odontological work provided new diagnostic dental characters for eighteen species and one genus. It also provided additional useful dental characters for three species and seven genera. This odontological analysis allowed the identification of fifteen fossil bat taxa from the Mount Etna deposits, all being representatives of extant bats, and included ten taxa identified to the species level (i.e., Macroderma gigas, Hipposideros semoni, Rhinolophus megaphyllus, Miniopterus schreibersii, Miniopterus australis, Scoteanax rueppellii, Chalinolobus gouldii, Chalinolobus dwyeri, Chalinolobus nigrogriseus and Vespadelus troughtoni) and five taxa identified to the generic level (i.e., Mormopterus, Taphozous, Nyctophilus, Scotorepens and Vespadelus). Palaeoecological analysis of the fossil taxa revealed that, unlike the non-volant mammal taxa, bats have remained essentially stable in terms of species diversity and community membership between the mid-Pleistocene rainforest habitat and the mesic habitat that occurs today in the region. The single major exception is Hipposideros semoni, which went locally extinct at Mount Etna. Additionally, while intensive mining operations resulted in the abandonment of at least one cave that served as a maternity roost in the recent past, the diversity of the Mount Etna bat fauna has not declined since European colonisation. The overall resilience through time of the bat species discussed herein is perhaps due to their unique ecological, behavioural, and physiological characteristics as well as their ability to fly, which have allowed them to successfully adapt to their changing environment. This study highlights the importance of palaeoecological analyses as a tool to gain an understanding of how bats have responded to environmental change in the past and provides valuable information for the conservation of threatened modern species, such as H. semoni.
Resumo:
This thesis develops, applies and analyses a collaborative design methodology for branding a tourism destination. The area between the Northern Tablelands and the Mid-North Coast of New South Wales, Australia, was used as a case study for this research. The study applies theoretical concepts of systems thinking and complexity to the real world, and tests the use of design as a social tool to engage multiple stakeholders in planning. In this research I acknowledge that places (and destinations) are socially constructed through people's interactions with their physical and social environments. This study explores a methodology that is explicit about the uncertainties of the destination’s system, and that helps to elicit knowledge and system trends. The collective design process used the creation of brand concepts, elements and strategies as instruments to directly engage stakeholders in the process of reflecting about their places and the issues related to tourism activity in the region. The methods applied included individual conversations and collaborative design sessions to elicit knowledge from local stakeholders. Concept maps were used to register and interpret information released throughout the process. An important aspect of the methodology was to bring together different stakeholder groups and translate the information into a common language that was understandable by all participants. This work helped release significant information as to what kind of tourism activity local stakeholders are prepared to receive and support. It also helped the emergence of a more unified regional identity. The outcomes delivered by the project (brand, communication material and strategies) were of high quality and in line with the desires and expectation of the local hosts. The process also reinforced local sense of pride, belonging and conservation. Furthermore, interaction between participants from different parts of the region triggered some self organising activity around the brand they created together. A major contribution of the present work is the articulation of an inclusive methodology to facilitate the involvement of locals into the decision-making process related to tourism planning. Of particular significance is the focus on the social construction of meaning in and through design, showing that design exercises can have significant social impact – not only on the final product, but also on the realities of the people involved in the creative process.
Resumo:
There is conflicting evidence in the literature with respect to backpackers as contributors to sustainable travel. This paper explores this market with respect to sustainable travel attitudes, behaviours and preferences. More specifically it examined the motivations of backpacker visitors to Australia, their preferences for environmentally friendly and volunteer tourism experiences, and explored attitudes towards the influence of environmental impacts on the future of travel. The resultsindicate that not all backpackers necessarily have a strong focus on the sustainability of their travel, but that those interested in community and environmental volunteering have the greatest potential to make meaningful contributions.
Resumo:
Iron (Fe) biogeochemistry is potentially of environmental significance in plantation-forested, subtropical coastal ecosystems where soil disturbance and seasonal water logging may lead to elevation of Fe mobilization and associated water quality deterioration. Using wet-chemical extraction and laboratory cultivation, we examined the occurrence of Fe forms and associated bacterial populations in diverse soils of a representative subtropical Australian coastal catchment (Poona Creek). Total reactive Fe was abundant throughout 0e30 cm soil cores, consisting primarily of crystalline forms in well-drained sand soils and water-logged loam soils, whereas in water-logged, low clay soils, over half of total reactive Fe was present in poorly-crystalline forms due to organic and inorganic complexation, respectively. Forestry practices such as plantation clear-felling and replanting, seasonal water logging and mineral soil properties significantly impacted soil organic carbon (C), potentially-bioavailable Fe pools and densities of S-, but not Fe-, bacterial populations. Bacterial Fe(III) reduction and abiotic Fe(II) oxidation, as well as chemolithotrophic S oxidation and aerobic, heterotrophic respiration were integral to catchment terrestrial FeeC cycling. This work demonstrates bacterial involvement in terrestrial Fe cycling in a subtropical coastal circumneutral-pH ecosystem.
Resumo:
Queensland's new State Planning Policy for Coastal Protection, released in March and approved in April 2011 as part of the Queensland Coastal Plan, stipulates that local governments prepare and implement adaptation strategies for built up areas projected to be subject to coastal hazards between present day and 2100. Urban localities within the delineated coastal high hazard zone (as determined by models incorporating a 0.8 meter rise in sea level and a 10% increase in the maximum cyclone activity) will be required to re-evaluate their plans to accommodate growth, revising land use plans to minimise impacts of anticipated erosion and flooding on developed areas and infrastructure. While implementation of such strategies would aid in avoidance or minimisation of risk exposure, communities are likely to face significant challenges in such implementation, especially as development in Queensland is so intensely focussed upon its coasts with these new policies directing development away from highly desirable waterfront land. This paper examines models of planning theory to understand how we plan when faced with technically complex problems towards formulation of a framework for evaluating and improving practice.
Resumo:
Soluble organic matter derived from exotic Pinus vegetation forms stronger complexes with iron (Fe) than the soluble organic matter derived from most native Australian species. This has lead to concern about the environmental impacts related to the establishment of extensive exotic Pinus plantations in coastal southeast Queensland, Australia. It has been suggested that the Pinus plantations may enhance the solubility of Fe in soils by increasing the amount of organically complexed Fe. While this remains inconclusive, the environmental impacts of an increased flux of dissolved, organically complexed Fe from soils to the fluvial system and then to sensitive coastal ecosystems are potentially damaging. Previous work investigated a small number of samples, was largely laboratory based and had limited application to field conditions. These assessments lacked field-based studies, including the comparison of the soil water chemistry of sites associated with Pinus vegetation and undisturbed native vegetation. In addition, the main controls on the distribution and mobilisation of Fe in soils of this subtropical coastal region have not been determined. This information is required in order to better understand the relative significance of any Pinus enhanced solubility of Fe. The main aim of this thesis is to determine the controls on Fe distribution and mobilisation in soils and soil waters of a representative coastal catchment in southeast Queensland (Poona Creek catchment, Fraser Coast) and to test the effect of Pinus vegetation on the solubility and speciation of Fe. The thesis is structured around three individual papers. The first paper identifies the main processes responsible for the distribution and mobilisation of labile Fe in the study area and takes a catchment scale approach. Physicochemical attributes of 120 soil samples distributed throughout the catchment are analysed, and a new multivariate data analysis approach (Kohonen’s self organising maps) is used to identify the conditions associated with high labile Fe. The second paper establishes whether Fe nodules play a major role as an iron source in the catchment, by determining the genetic mechanism responsible for their formation. The nodules are a major pool of Fe in much of the region and previous studies have implied that they may be involved in redox-controlled mobilisation and redistribution of Fe. This is achieved by combining a detailed study of a ferric soil profile (morphology, mineralogy and micromorphology) with the distribution of Fe nodules on a catchment scale. The third component of the thesis tests whether the concentration and speciation of Fe in soil solutions from Pinus plantations differs significantly from native vegetation soil solutions. Microlysimeters are employed to collect unaltered, in situ soil water samples. The redox speciation of Fe is determined spectrophotometrically and the interaction between Fe and dissolved organic matter (DOM) is modelled with the Stockholm Humic Model. The thesis provides a better understanding of the controls on the distribution, concentration and speciation of Fe in the soils and soil waters of southeast Queensland. Reductive dissolution is the main mechanism by which mobilisation of Fe occurs in the study area. Labile Fe concentrations are low overall, particularly in the sandy soils of the coastal plain. However, high labile Fe is common in seasonally waterlogged and clay-rich soils which are exposed to fluctuating redox conditions and in organic-rich soils adjacent to streams. Clay-rich soils are most common in the upper parts of the catchment. Fe nodules were shown to have a negligible role in the redistribution of dissolved iron in the catchment. They are formed by the erosion, colluvial transport and chemical weathering of iron-rich sandstones. The ferric horizons, in which nodules are commonly concentrated, subsequently form through differential biological mixing of the soil. Whereas dissolution/ reprecipitation of the Fe cements is an important component of nodule formation, mobilised Fe reprecipitates locally. Dissolved Fe in the soil waters is almost entirely in the ferrous form. Vegetation type does not affect the concentration and speciation of Fe in soil waters, although Pinus DOM has greater acidic functional group site densities than DOM from native vegetation. Iron concentrations are highest in the high DOM soil waters collected from sandy podosols, where they are controlled by redox potential. Iron concentrations are low in soil solutions from clay and iron oxide rich soils, in spite of similar redox potentials. This is related to stronger sorption to the reactive clay and iron oxide mineral surfaces in these soils, which reduces the amount of DOM available for microbial metabolisation and reductive dissolution of Fe. Modelling suggests that Pinus DOM can significantly increase the amount of truly dissolved ferric iron remaining in solution in oxidising conditions. Thus, inputs of ferrous iron together with Pinus DOM to surface waters may reduce precipitation of hydrous ferric oxides and increase the flux of dissolved iron out of the catchment. Such inputs are most likely from the lower catchment, where podosols planted with Pinus are most widely distributed. Significant outcomes other than the main aims were also achieved. It is shown that mobilisation of Fe in podosols can occur as dissolved Fe(II) rather than as Fe(III)-organic complexes. This has implications for the large body of work which assumes that Fe(II) plays a minor role. Also, the first paper demonstrates that a data analysis approach based on Kohonen’s self organising maps can facilitate the interpretation of complex datasets and can help identify geochemical processes operating on a catchment scale.
Resumo:
Iron (Fe) is the fourth most abundant element in the Earth’s crust. Excess Fe mobilization from terrestrial into aquatic systems is of concern for deterioration of water quality via biofouling and nuisance algal blooms in coastal and marine systems. Substantial Fe dissolution and transport involve alternate Fe(II) oxidation followed by Fe(III) reduction, with a diversity of Bacteria and Archaea acting as the key catalyst. Microbially-mediated Fe cycling is of global significance with regard to cycles of carbon (C), sulfur (S) and manganese (Mn). However, knowledge regarding microbial Fe cycling in circumneutral-pH habitats that prevail on Earth has been lacking until recently. In particular, little is known regarding microbial function in Fe cycling and associated Fe mobilization and greenhouse (CO2 and CH4, GHG) evolution in subtropical Australian coastal systems where microbial response to ambient variations such as seasonal flooding and land use changes is of concern. Using the plantation-forested Poona Creek catchment on the Fraser Coast of Southeast Queensland (SEQ), this research aimed to 1) study Fe cycling-associated bacterial populations in diverse terrestrial and aquatic habitats of a representative subtropical coastal circumneutral-pH (4–7) ecosystem; and 2) assess potential impacts of Pinus plantation forestry practices on microbially-mediated Fe mobilization, organic C mineralization and associated GHG evolution in coastal SEQ. A combination of wet-chemical extraction, undisturbed core microcosm, laboratory bacterial cultivation, microscopy and 16S rRNA-based molecular phylogenetic techniques were employed. The study area consisted primarily of loamy sands, with low organic C and dissolved nutrients. Total reactive Fe was abundant and evenly distributed within soil 0–30 cm profiles. Organic complexation primarily controlled Fe bioavailability and forms in well-drained plantation soils and water-logged, native riparian soils, whereas tidal flushing exerted a strong “seawater effect” in estuarine locations and formed a large proportion of inorganic Fe(III) complexes. There was a lack of Fe(II) sources across the catchment terrestrial system. Mature, first-rotation plantation clear-felling and second-rotation replanting significantly decreased organic matter and poorly crystalline Fe in well-drained soils, although variations in labile soil organic C fractions (dissolved organic C, DOC; and microbial biomass C, MBC) were minor. Both well-drained plantation soils and water-logged, native-vegetation soils were inhabited by a variety of cultivable, chemotrophic bacterial populations capable of C, Fe, S and Mn metabolism via lithotrophic or heterotrophic, (micro)aerobic or anaerobic pathways. Neutrophilic Fe(III)-reducing bacteria (FeRB) were most abundant, followed by aerobic, heterotrophic bacteria (heterotrophic plate count, HPC). Despite an abundance of FeRB, cultivable Fe(II)-oxidizing bacteria (FeOB) were absent in associated soils. A lack of links between cultivable Fe, S or Mn bacterial densities and relevant chemical measurements (except for HPC correlated with DOC) was likely due to complex biogeochemical interactions. Neither did variations in cultivable bacterial densities correlate with plantation forestry practices, despite total cultivable bacterial densities being significantly lower in estuarine soils when compared with well-drained plantation soils and water-logged, riparian native-vegetation soils. Given that bacterial Fe(III) reduction is the primary mechanism of Fe oxide dissolution in soils upon saturation, associated Fe mobilization involved several abiotic and biological processes. Abiotic oxidation of dissolved Fe(II) by Mn appeared to control Fe transport and inhibit Fe dissolution from mature, first-rotation plantation soils post-saturation. Such an effect was not observed in clear-felled and replanted soils associated with low SOM and potentially low Mn reactivity. Associated GHG evolution post-saturation mainly involved variable CO2 emissions, with low, but consistently increasing CH4 effluxes in mature, first-rotation plantation soil only. In comparison, water-logged soils in the riparian native-vegetation buffer zone functioned as an important GHG source, with high potentials for Fe mobilization and GHG, particularly CH4 emissions in riparian loam soils associated with high clay and crystalline Fe fractions. Active Fe–C cycling was unlikely to occur in lower-catchment estuarine soils associated with low cultivable bacterial densities and GHG effluxes. As a key component of bacterial Fe cycling, neutrophilic FeOB widely occurred in diverse aquatic, but not terrestrial, habitats of the catchment study area. Stalked and sheathed FeOB resembling Gallionella and Leptothrix were limited to microbial mat material deposited in surface fresh waters associated with a circumneutral-pH seep, and clay-rich soil within riparian buffer zones. Unicellular, Sideroxydans-related FeOB (96% sequence identity) were ubiquitous in surface and subsurface freshwater environments, with highest abundance in estuary-adjacent shallow coastal groundwater water associated with redox transition. The abundance of dissolved C and Fe in the groundwater-dependent system was associated with high numbers of cultivable anaerobic, heterotrophic FeRB, microaerophilic, putatively lithotrophic FeOB and aerobic, heterotrophic bacteria. This research represents the first study of microbial Fe cycling in diverse circumneutral-pH environments (terrestrial–aquatic, freshwater–estuarine, surface–subsurface) of a subtropical coastal ecosystem. It also represents the first study of its kind in the southern hemisphere. This work highlights the significance of bacterial Fe(III) reduction in terrestrial, and bacterial Fe(II) oxidation in aquatic catchment Fe cycling. Results indicate the risk of promotion of Fe mobilization due to plantation clear-felling and replanting, and GHG emissions associated with seasonal water-logging. Additional significant outcomes were also achieved. The first direct evidence for multiple biomineralization patterns of neutrophilic, microaerophilic, unicellular FeOB was presented. A putatively pure culture, which represents the first cultivable neutrophilic FeOB from the southern hemisphere, was obtained as representative FeOB ubiquitous in diverse catchment aquatic habitats.
Resumo:
This study explores the international entrepreneurial values influencing the intensity of Internet use in the internationalization process of small to medium sized enterprises (SMEs), within the Australian tourism industry. The findings point to a relationship between the values of international entrepreneurs and the inclination of the firm to develop and initiate international activity. And so, this study endeavors to offer insight into issues that remain unresolved in existing tourism and international entrepreneurship (IE) literature. Two effective but underutilized qualitative methods were used in this study to identify the values of international entrepreneurs. They are repertory test and laddering analysis.
Resumo:
In the decade since the destination branding literature emerged (see for example Pritchard & Morgan 1998, Dosen & Vransevic 1998), only a few books have been published. These are Morgan et al.’s (2002, 2004) edited volumes of international case studies and conceptual papers, and Baker’s (2007) practitioner perspective on branding small cities in the USA. This work by Stephanie Donald and John Gammack is the first research-based text related to destination branding, and is a welcome and timely addition to the field. In the foreword to the first issue of Place Branding and Public Policy, editor Simon Anholt (2004, p. 4) suggested “almost nobody agrees on what, exactly, branding means”, when he described place branding practice as akin to the Wild West. Indeed, this lack of theory was one of the motivators for the authors of this text. Tourism and the Branded City is part of Ashgate’s New Directions in Tourism Analysis series, edited by Dimitri Ioannides. The aim of the series is to address the gap in published theory underpinning the study of tourism, with a particular interest in non-business disciplines such as Sociology, Social Anthropology, Human and Social Geography, and Cultural Studies...