239 resultados para Class III furcation defects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone generation by autogenous cell transplantation in combination with a biodegradable scaffold is one of the most promising techniques being developed in craniofacial surgery. The objective of this combined in vitro and in vivo study was to evaluate the morphology and osteogenic differentiation of bone marrow derived mesenchymal progenitor cells and calvarial osteoblasts in a two-dimensional (2-D) and three-dimensional (3-D) culture environment (Part I of this study) and their potential in combination with a biodegradable scaffold to reconstruct critical-size calvarial defects in an autologous animal model [Part II of this study; see Schantz, J.T., et al. Tissue Eng. 2003;9(Suppl. 1):S-127-S-139; this issue]. New Zealand White rabbits were used to isolate osteoblasts from calvarial bone chips and bone marrow stromal cells from iliac crest bone marrow aspirates. Multilineage differentiation potential was evaluated in a 2-D culture setting. After amplification, the cells were seeded within a fibrin matrix into a 3-D polycaprolactone (PCL) scaffold system. The constructs were cultured for up to 3 weeks in vitro and assayed for cell attachment and proliferation using phase-contrast light, confocal laser, and scanning electron microscopy and the MTS cell metabolic assay. Osteogenic differentiation was analyzed by determining the expression of alkaline phosphatase (ALP) and osteocalcin. The bone marrow-derived progenitor cells demonstrated the potential to be induced to the osteogenic, adipogenic, and chondrogenic pathways. In a 3-D environment, cell-seeded PCL scaffolds evaluated by confocal laser microscopy revealed continuous cell proliferation and homogeneous cell distribution within the PCL scaffolds. On osteogenic induction mesenchymal progenitor cells (12 U/L) produce significantly higher (p < 0.05) ALP activity than do osteoblasts (2 U/L); however, no significant differences were found in osteocalcin expression. In conclusion, this study showed that the combination of a mechanically stable synthetic framework (PCL scaffolds) and a biomimetic hydrogel (fibrin glue) provides a potential matrix for bone tissue-engineering applications. Comparison of osteogenic differentiation between the two mesenchymal cell sources revealed a similar pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Professional discourse in education has been the focus of research conducted mostly with teachers and professional practitioners but the work of students in the built environment has largely been ignored. This article presents an analysis of students’ visual discourse in the final professional year of a landscape architecture course in Brisbane, Australia. The study has a multi-method design and includes drawings, interviews and documentary materials, but focuses on the drawings in this paper. Using the theory of Bernstein, the analysis considers student representations as interrelations between professional identity and discretionary space for legitimate knowledge formation in landscape planning. It shows a shift in how students persuade the teacher of their expanding views of this field. The discussion of this shift centres on the professional knowledge that students choose rather than need to learn. It points to the differences within a class that a teacher must address in curriculum design in a contemporary professional course.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polycaprolactone (PCL)–collagen electrospun mesh is proposed as a novel alternative to the conventional periosteal graft in autologous chondrocyte implantation. This is the first known attempt in designing a cartilage resurfacing membrane using a mechanically resilient PCL mesh with a weight-average molecular weight of 139 300 that is enhanced with bioactive collagen. PCL–collagen 10, 20 and 40% electrospun meshes (Coll-10, Coll-20 and Coll-40) were evaluated and it was discovered that the retention of surface collagen could only be achieved in Coll-20 and Coll-40. Furthermore Coll-20 was stiffer and stronger than Coll-40 and it satisfied the mechanical demands at the cartilage implant site. When seeded with mesenchymal stem cells (MSCs), the cells adhered on the surface of the Coll-20 mesh and they remained viable over a period of 28 days; however, they were unable to infiltrate through the dense meshwork. Cell compatibility was also noted in the chondrogenic environment as the MSCs differentiated into chondrocytes with the expression of Sox9, aggrecan and collagen II. More importantly, the mesh did not induce a hypertrophic response from the cells. The current findings support the use of Coll-20 as a cartilage patch, and future implantation studies are anticipated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of challenging fractures and large osseous defects presents a formidable problem for orthopaedic surgeons. Tissue engineering/regenerative medicine approaches seek to solve this problem by delivering osteogenic signals within scaffolding biomaterials. In this study, we introduce a hybrid growth factor delivery system that consists of an electrospun nanofiber mesh tube for guiding bone regeneration combined with peptide-modified alginate hydrogel injected inside the tube for sustained growth factor release. We tested the ability of this system to deliver recombinant bone morphogenetic protein-2 (rhBMP-2) for the repair of critically-sized segmental bone defects in a rat model. Longitudinal [mu]-CT analysis and torsional testing provided quantitative assessment of bone regeneration. Our results indicate that the hybrid delivery system resulted in consistent bony bridging of the challenging bone defects. However, in the absence of rhBMP-2, the use of nanofiber mesh tube and alginate did not result in substantial bone formation. Perforations in the nanofiber mesh accelerated the rhBMP-2 mediated bone repair, and resulted in functional restoration of the regenerated bone. [mu]-CT based angiography indicated that perforations did not significantly affect the revascularization of defects, suggesting that some other interaction with the tissue surrounding the defect such as improved infiltration of osteoprogenitor cells contributed to the observed differences in repair. Overall, our results indicate that the hybrid alginate/nanofiber mesh system is a promising growth factor delivery strategy for the repair of challenging bone injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to evaluate the feasibility and potential of a hybrid scaffold system in large- and high-load-bearing osteochondral defects repair. The implants were made of medical-grade PCL (mPCL) for the bone compartment whereas fibrin glue was used for the cartilage part. Both matrices were seeded with allogenic bone marrow-derived mesenchymal cells (BMSC) and implanted in the defect (4 mm diameter×5 mm depth) on medial femoral condyle of adult New Zealand White rabbits. Empty scaffolds were used at the control side. Cell survival was tracked via fluorescent labeling. The regeneration process was evaluated by several techniques at 3 and 6 months post-implantation. Mature trabecular bone regularly formed in the mPCL scaffold at both 3 and 6 months post-operation. Micro-Computed Tomography showed progression of mineralization from the host–tissue interface towards the inner region of the grafts. At 3 months time point, the specimens showed good cartilage repair. In contrast, the majority of 6 months specimens revealed poor remodeling and fissured integration with host cartilage while other samples could maintain good cartilage appearance. In vivo viability of the transplanted cells was demonstrated for the duration of 5 weeks. The results demonstrated that mPCL scaffold is a potential matrix for osteochondral bone regeneration and that fibrin glue does not inherit the physical properties to allow for cartilage regeneration in a large and high-load-bearing defect site. Keywords: Osteochondral tissue engineering; Scaffold; Bone marrow-derived precursor cells; Fibrin glue

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streaming SIMD Extensions (SSE) is a unique feature embedded in the Pentium III class of microprocessors. By fully exploiting SSE, parallel algorithms can be implemented on a standard personal computer and a theoretical speedup of four can be achieved. In this paper, we demonstrate the implementation of a parallel LU matrix decomposition algorithm for solving power systems network equations with SSE and discuss advantages and disadvantages of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following paper explores the use of collaborative pedagogical approaches to advance foundational architectural design education, by linking design process to sustainable technology principles. After a brief discussion on architectural design education, the mentioned collaborative approach is described. This approach facilitates students’ exchange of knowledge between two courses, despite no explicit/assessable requirement to do so. The result for the students is deeper learning and a design process that is enriched through collaboration with sustainable technology. The success of this approach has been measured through questionnaires, evaluation surveys, and a comparative assessment of students common to both courses. The paper focuses on the challenges and innovations in connecting architectural design and technology education, where students are encouraged to implement lessons learnt, thereby closing the gap that these courses have traditionally represented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter looks at the 'smart links' and 'smart paths' created by some English as a second language (ESL) teachers to enable refugee students with little, no or severely interrupted schooling to participate in class after re-settlement in the West. Data are drawn from an interview study conducted in an intensive English language school for adolescents and three mainstream high schools. Findings show how teachers who rejected deficit discourses enabled student participation in the intellectual work of the classroom. The Bourdieusian concept of capital is used to describe teacher competence for diverse classrooms in a world of student mobility and unequal educational access.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Genetic Algorithms (GA) approach to search the optimized path for a class of transportation problems. The formulation of the problems for suitable application of GA will be discussed. Exchanging genetic information in the sense of neighborhoods will be introduced for generation reproduction. The performance of the GA will be evaluated by computer simulation. The proposed algorithm use simple coding with population size 1 converged in reasonable optimality within several minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses reflective practice in research and practice and takes the issue of consciousness of social class in vocational psychology as a working example. It is argued that the discipline’s appreciation of social class can be advanced through application of the qualitative research method autoethnography. Excerpts from an autoethnographic study are used to explore the method’s potential. This reflexive research method is presented as a potential vehicle to improve vocational psychologists’ own class consciousness, and to concomitantly enhance their capacity to grasp social class within their own spheres of research and practice. It is recommended that autoethnography be used for research, training, and professional development for vocational psychologists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In plant cells, myosin is believed to be the molecular motor responsible for actin-based motility processes such as cytoplasmic streaming and directed vesicle transport. In an effort to characterize plant myosin, a cDNA encoding a myosin heavy chain was isolated from Arabidopsis thaliana. The predicted product of the MYA1 gene is 173 kDa and is structurally similar to the class V myosins. It is composed of the highly-conserved NH2-terminal "head" domain, a putative calmodulin-binding "neck" domain an alpha-helical coiled-coil domain, and a COOH-terminal domain. Northern blot analysis shows that the Arabidopsis MYA1 gene is expressed in all the major plant tissues (flower, leaf, root, and stem). We suggest that the MYA1 myosin may be involved in a general intracellular transport process in plant cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

‘MBA fever’ in China needs to be understood in the wider context of forces driving structural change in China’s relation to the global knowledge economy. The rise of a ‘new middle class’ in China is connected to the new claims for cultural leadership of an emergent ‘creative class’, which generates new issues about the relevance of the MBA in China, in terms of its relevance to Chinese economic circumstances, and its flexibility and capacity to respond to accumulation strategies that emphasise innovation, creativity and entrepreneurship.