142 resultados para Chemical beam epitaxy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete stochastic simulations, via techniques such as the Stochastic Simulation Algorithm (SSA) are a powerful tool for understanding the dynamics of chemical kinetics when there are low numbers of certain molecular species. However, an important constraint is the assumption of well-mixedness and homogeneity. In this paper, we show how to use Monte Carlo simulations to estimate an anomalous diffusion parameter that encapsulates the crowdedness of the spatial environment. We then use this parameter to replace the rate constants of bimolecular reactions by a time-dependent power law to produce an SSA valid in cases where anomalous diffusion occurs or the system is not well-mixed (ASSA). Simulations then show that ASSA can successfully predict the temporal dynamics of chemical kinetics in a spatially constrained environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the use of the hydrogen bond accepting properties of neutral nitrone moieties to prepare benzylic-amide-macrocycle-containing [2]rotaxanes in yields as high as 70 %. X-Ray crystallography shows the presence of up to four intercomponent hydrogen bonds between the amide groups of the macrocycle and the two nitrone groups of the thread. Dynamic 1H NMR studies of the rates of macrocycle pirouetting in nonpolar solutions indicate that amide-nitrone hydrogen bonds are particularly strong, ~1.3 and ~0.2 kcal mol-1 stronger than similar amide-ester and amide-amide interactions, respectively. In addition to polarizing the N-O bond through hydrogen bonding, the rotaxane structure affects the chemistry of the nitrone groups in two significant ways: The intercomponent hydrogen bonding activates the nitrone groups to electrochemical reduction, a one electron reduction of the rotaxane being stablized by a remarkable 400 mV (8.1 kcal mol-1) with respect to the same process in the thread; encapsulation, however, protects the same functional groups from chemical reduction with an external reagent (and slows down electron transfer to and from the electroactive groups in cyclicvoltammetry experiments). Mechanical interlocking with a hydrogen bonding molecular sheath thus provides a route to an encapsulated polarized functional group and radical anions of significant kinetic and thermodynamic stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beam steering with high front-to-back ratio and high directivity on a small platform is proposed. Two closely spaced antenna pairs with eigenmode port decoupling are used as the basic radiating elements. Two orthogonal radiation patterns are obtained for each antenna pair. High front-to-back ratio and high directivity are achieved by combining the two orthogonal radiation patterns. With an infinite groundplane, a front-to-back ratio of 21 dB with a directivity of 9.8 dB can be achieved. Beam steering, at the expense of a slight decrease in directivity, is achieved by placing the two antenna pairs 0.5λ apart. The simulated half power beamwidth is 58°. A prototype was designed and the 2-D radiation patterns were measured. The prototype supports three directions of beam steering. The half power beamwidth was measured as 46°, 48°, and 50° for the three respective beam directions. The measured front-to-back ratio in azimuth plane is 8.5 dB, 8.0 dB and 7.6 dB, respectively.