127 resultados para Charge-carrier velocity
Resumo:
Actuators with deliberately added compliant elements in the transmission system are often described as improving the safety of the actuator at the detriment of the performance. We show that our variant of the Series Elastic Actuator topology, the Velocity Sourced Series Elastic Actuator, has well defined performance characteristics that make for improvements in safety and performance over conventional high impedance actuators. The improvement in performance was principally achieved by having tight velocity control of the DC motor that acts as the mechanical power source for the actuator. Results for performance are given for point to point transition times, while results for safety are based on empirical assessment of the Head Injury Criterion during collisions.
Resumo:
This article reports the details of a research on novel design in the field of semitrailer sector and discuss design by hazard prevention techniques. The novel design made addresses occupational health and safety (OHS)concerns of fall from heights. The research includes a detailed survey of national data sources to examine the fatalities caused due to fall from heights in car carriers. The study investigates OHS recommendations in Australia for semitrailer sector. Often injuries are caused due to drivers working above the 1.5 meter height for loading, unloading of the cars, moving the decks up, down, strapping the cars, and slipperly. The new design is developed using latest computer aided design and engineeing (CAD, CAE), product data management (PDM), virtual design process (VDP). The new car carrier design excels in reducing the risks of injuries to drivers and new bench mark for OHS standards. The new design has all the decks operated with hydraulics and uses unique ratchet lock mechanism (fool proof design) and loading happens at a safe working height (below 1.5 meter). All the cars are strapped on the safe working height, and then car desks operated hydraulically to transfer them to the required position. This also includes the car on the prime mover, which shuttles across from one deck to other using hydraulic and rack-pinion mechanisms. The novel design car carrier solves the problem of falls from height: next step would be to transfer this technology across other similar effected sectors.
Resumo:
In this work, we investigate and compare the Maxwell–Stefan and Nernst–Planck equations for modeling multicomponent charge transport in liquid electrolytes. Specifically, we consider charge transport in the Li+/I−/I3−/ACN ternary electrolyte originally found in dye-sensitized solar cells. We employ molecular dynamics simulations to obtain the Maxwell–Stefan diffusivities for this electrolyte. These simulated diffusion coefficients are used in a multicomponent charge transport model based on the Maxwell– Stefan equations, and this is compared to a Nernst–Planck based model which employs binary diffusion coefficients sourced from the literature. We show that significant differences between the electrolyte concentrations at electrode interfaces, as predicted by the Maxwell–Stefan and Nernst–Planck models, can occur. We find that these differences are driven by a pressure term that appears in the Maxwell–Stefan equations. We also investigate what effects the Maxwell–Stefan diffusivities have on the simulated charge transport. By incorporating binary diffusivities found in the literature into the Maxwell–Stefan framework, we show that the simulated transient concentration profiles depend on the diffusivities; however, the simulated equilibrium profiles remain unaffected.
Resumo:
An experimental set-up was used to visually observe the characteristics of bubbles as they moved up a column holding xanthan gum crystal suspensions. The bubble rise characteristics in xanthan gum solutions with crystal suspension are presented in this paper. The suspensions were made by using different concentrations of xanthan gum solutions with 0.23 mm mean diameter polystyrene crystal particles. The influence of the dimensionless quantities; namely the Reynolds number, Re, the Weber number, We, and the drag co-efficient, cd, are identified for the determination of the bubble rise velocity. The effect of these dimensionless groups together with the Eötvös number, Eo, the Froude number, Fr, and the bubble deformation parameter, D, on the bubble rise velocity and bubble trajectory are analysed. The experimental results show that the average bubble velocity increases with the increase in bubble volume for xanthan gum crystal suspensions. At high We, Eo and Re, bubbles are spherical-capped and their velocities are found to be very high. At low We and Eo, the surface tension force is significant compared to the inertia force. The viscous forces were shown to have no substantial effect on the bubble rise velocity for 45 < Re < 299. The results show that the drag co-efficient decreases with the increase in bubble velocity and Re. The trajectory analysis showed that small bubbles followed a zigzag motion while larger bubbles followed a spiral motion. The smaller bubbles experienced less horizontal motion in crystal suspended xanthan gum solutions while larger bubbles exhibited a greater degree of spiral motion than those seen in the previous studies on the bubble rise in xanthan gum solutions without crystal.
Resumo:
The idealised theory for the quasi-static flow of granular materials which satisfy the Coulomb-Mohr hypothesis is considered. This theory arises in the limit that the angle of internal friction approaches $\pi/2$, and accordingly these materials may be referred to as being `highly frictional'. In this limit, the stress field for both two-dimensional and axially symmetric flows may be formulated in terms of a single nonlinear second order partial differential equation for the stress angle. To obtain an accompanying velocity field, a flow rule must be employed. Assuming the non-dilatant double-shearing flow rule, a further partial differential equation may be derived in each case, this time for the streamfunction. Using Lie symmetry methods, a complete set of group-invariant solutions is derived for both systems, and through this process new exact solutions are constructed. Only a limited number of exact solutions for gravity driven granular flows are known, so these results are potentially important in many practical applications. The problem of mass flow through a two-dimensional wedge hopper is examined as an illustration.
Resumo:
The success rate of carrier phase ambiguity resolution (AR) is the probability that the ambiguities are successfully fixed to their correct integer values. In existing works, an exact success rate formula for integer bootstrapping estimator has been used as a sharp lower bound for the integer least squares (ILS) success rate. Rigorous computation of success rate for the more general ILS solutions has been considered difficult, because of complexity of the ILS ambiguity pull-in region and computational load of the integration of the multivariate probability density function. Contributions of this work are twofold. First, the pull-in region mathematically expressed as the vertices of a polyhedron is represented by a multi-dimensional grid, at which the cumulative probability can be integrated with the multivariate normal cumulative density function (mvncdf) available in Matlab. The bivariate case is studied where the pull-region is usually defined as a hexagon and the probability is easily obtained using mvncdf at all the grid points within the convex polygon. Second, the paper compares the computed integer rounding and integer bootstrapping success rates, lower and upper bounds of the ILS success rates to the actual ILS AR success rates obtained from a 24 h GPS data set for a 21 km baseline. The results demonstrate that the upper bound probability of the ILS AR probability given in the existing literatures agrees with the actual ILS success rate well, although the success rate computed with integer bootstrapping method is a quite sharp approximation to the actual ILS success rate. The results also show that variations or uncertainty of the unit–weight variance estimates from epoch to epoch will affect the computed success rates from different methods significantly, thus deserving more attentions in order to obtain useful success probability predictions.
Resumo:
Dry powder inhaler (DPI) formulations is one of the most useful aerosol preparations in which drugs may be formulated as carrier-based interactive mixtures with micronised drug particles (<5 μm) adhered onto the surface of large inert carriers (lactose powders). The addition of magnesium stearate (MgSt) (1-3), was found to increase dispersion of various drugs from DPI formulations. Recently, some active compounds coated with 5% (wt/wt) MgSt using the mechanofusion method showed significant improvements in aerosolization behavior due to the reduction in intrinsic cohesion force (4). Application of MgSt in powder formulations is not new; however, no studies demonstrated the minimum threshold level for this excipient in efficient aerosolization of drug powders from the interactive mixtures. Therefore, this study investigated the role of MgSt concentration on the efficient dispersion of salbutamol sulphate (SS) from DPI formulations.
Resumo:
The flying capacitor multicell inverter (FCMI) possesses natural balancing property. With the phase-shifted (PS) carrier-based scheme, natural balancing can be achieved in a straightforward manner. However, to achieve natural balancing with the harmonically optimal phase-disposition (PD) carrierbased scheme, the conventional approaches require (n-1) x (n-1) trapezoidal carrier signals for an n-level inverter, which is (n-1) x (n-2) times more than that in the standard PD scheme. This paper proposes two improved natural balancing strategies for FMI under PD scheme, which use the same (n-1) carrier signals as used in the standard PD scheme. In the first scheme, on-line detection is performed of the band in which the modulation signal is located, corresponding period number of the carrier, and rising or falling half cycle of the carrier waveform to generate the switching signals based on certain rules. In the second strategy, the output voltage level selection is first processed and the switching signals are then generated according to a rule based on preferential cell selection algorithm. These methods are easy to use and can be simply implemented as compared to the other available methods. Simulation and experimental results are presented for a five-level inverter to verify these proposed schemes.
Resumo:
Asylum is being gradually denuded of the national institutional mechanisms (judicial, legislative and administrative) that provide the framework for a fair and effective asylum hearing. In this sense, there is an ongoing ‘denationalization’ or ‘deformalization’ of the asylum process. This chapter critically examines one of the linchpins of this trend: the erection of pre-entry measures at ports of embarkation in order to prevent asylum seekers from physically accessing the territory of the state. Pre-entry measures comprise the core requirement that foreigners possess an entry visa granting permission to enter the state of destination. Visa requirements are increasingly implemented by immigration officials posted abroad or by officials of transit countries pursuant to bilateral agreements (so-called ‘juxtaposed’ immigration controls). Private carriers, which are subject to sanctions if they bring persons to a country who do not have permission to enter, also engage in a form of de facto immigration control on behalf of states. These measures constitute a type of ‘externalized’ or ‘exported’ border that pushes the immigration boundaries of the state as far from its physical boundaries as possible. Pre-entry measures have a crippling impact on the ability of asylum seekers to access the territory of states to claim asylum. In effect, states have ‘externalized’ asylum by replacing the legal obligation on states to protect refugees arriving at ports of entry with what are perceived to be no more than moral obligations towards asylum seekers arriving at the external border of the state.
Resumo:
As solar hydrogen is a sustainable and environmental friendly energy carrier, it is considered to take the place of fossil fuels in the near future. Solar hydrogen can be generated by splitting of water under solar light illumination. In this study, the use of nanostructured hematite thin-film electrodes in photocatalytic water splitting was investigated. Hematite (á-Fe2O3) has a narrow band-gap of 2.2 eV, which is able to utilise approximately 40% of solar radiation. However, poor photoelectrochemical performance is observed for hematite due to low electrical conductivity and a high rate of electron-hole recombination. An extensive review of useful measures taken to overcoming the disadvantages of hematite so as to enhance its performance was presented including thin-film structure, nanostructuring, doping, etc. Since semiconductoring materials which exhibit an inverse opal structure are expected to have a high surface-volume ratio, unique optical characteristics and a shorter distance for photogenerated holes to travel to the electrode/electrolyte interface, inverse opals of hematite thin films deposited on FTO glass substrate were successfully prepared by doctor blading using PMMA as a template. However, due to the poor adhesion of the films, an acidic medium (i.e., 2 M HCl) was employed to significantly enhance the adhesion of the films, which completely destroyed the inverse opal structure. Therefore, undoped, Ti and Zn-doped hematite thin films deposied on FTO glass substrate without an inverse opal structure were prepared by doctor blading and spray pyrolysis and characterised using SEM, EDX, XRD, TGA, UV-Vis spectroscopy and photoelectrochemical measurements. Regarding the doped hematite thin films prepared by doctor blading, the photoelectrochemical activity of the hematite photoelectrodes was improved by incorporation of Ti, most likely owing to the increased electrical conductivity of the films, the stabilisation of oxygen vacancies by Ti4+ ions and the increased electric field of the space charge layer. A highest photoresponse was recorded in case of 2.5 at.% Ti which seemed to be an optimal concentration. The effect of doping content, thickness, and calcination temperature on the performance of the Ti-doped photoelectrodes was investigated. Also, the photoactivity of the 2.5 at.% Ti-doped samples was examined in two different types of electrochemical cells. Zn doping did not enhance the photoactivity of the hematite thin films though Zn seemed to enhance the hole transport due to the slow hole mobility of hematite which could not be overcome by the enhancement. The poor performance was also obtained for the Ti-doped samples prepared by spray pyrolysis, which appeared to be a result of introduction of impurities from the metallic parts of the spray gun in an acidic medium. Further characterisation of the thin-film electrodes is required to explain the mechanism by which enhanced performance was obtained for Ti-doped electrodes (doctor blading) and poor photoactivity for Zn and Ti-doped samples which were synthesised by doctor blading and spray pyrolysis, respectively. Ti-doped hematite thin films will be synthesised in another way, such as dip coating so as to maintain an inverse opal structure as well as well adhesion. Also, a comparative study of the films will be carried out.
Resumo:
The flood flow in urbanised areas constitutes a major hazard to the population and infrastructure as seen during the summer 2010-2011 floods in Queensland (Australia). Flood flows in urban environments have been studied relatively recently, although no study considered the impact of turbulence in the flow. During the 12-13 January 2011 flood of the Brisbane River, some turbulence measurements were conducted in an inundated urban environment in Gardens Point Road next to Brisbane's central business district (CBD) at relatively high frequency (50 Hz). The properties of the sediment flood deposits were characterised and the acoustic Doppler velocimeter unit was calibrated to obtain both instantaneous velocity components and suspended sediment concentration in the same sampling volume with the same temporal resolution. While the flow motion in Gardens Point Road was subcritical, the water elevations and velocities fluctuated with a distinctive period between 50 and 80 s. The low frequency fluctuations were linked with some local topographic effects: i.e, some local choke induced by an upstream constriction between stairwells caused some slow oscillations with a period close to the natural sloshing period of the car park. The instantaneous velocity data were analysed using a triple decomposition, and the same triple decomposition was applied to the water depth, velocity flux, suspended sediment concentration and suspended sediment flux data. The velocity fluctuation data showed a large energy component in the slow fluctuation range. For the first two tests at z = 0.35 m, the turbulence data suggested some isotropy. At z = 0.083 m, on the other hand, the findings indicated some flow anisotropy. The suspended sediment concentration (SSC) data presented a general trend with increasing SSC for decreasing water depth. During a test (T4), some long -period oscillations were observed with a period about 18 minutes. The cause of these oscillations remains unknown to the authors. The last test (T5) took place in very shallow waters and high suspended sediment concentrations. It is suggested that the flow in the car park was disconnected from the main channel. Overall the flow conditions at the sampling sites corresponded to a specific momentum between 0.2 to 0.4 m2 which would be near the upper end of the scale for safe evacuation of individuals in flooded areas. But the authors do not believe the evacuation of individuals in Gardens Point Road would have been safe because of the intense water surges and flow turbulence. More generally any criterion for safe evacuation solely based upon the flow velocity, water depth or specific momentum cannot account for the hazards caused by the flow turbulence, water depth fluctuations and water surges.