50 resultados para Ceramic coatings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y2SiO5 is a promising candidate for oxidation-resistant or environmental/thermal barrier coatings (ETBC) due to its excellent high-temperature stability, low elastic modulus and low oxygen permeability. In this paper, we investigated the thermal properties of Y2SiO5 comprehensively, including thermal expansion, thermal diffusivity, heat capacity and thermal conductivity. It is interesting that Y2SiO5 has a very low thermal conductivity (∼1.40 W/m K) but a relatively high linear thermal expansion coefficient ((8.36 ± 0.5) × 10-6 K-1), suggesting compatible thermal and mechanical properties to some non-oxide ceramics and nickel superalloys as ETBC layer. Y2SiO5 is also an ideal EBC on YSZ TBC layer due to their close thermal expansion coefficients. As a continuous source of Y3+, it is predicted that Y2SiO5 EBC may prolong the lifetime of zirconia-based TBC by stopping the degradation aroused by the loss of Y stabilizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal properties, namely, Debye temperature, thermal expansion coefficient, heat capacity, and thermal conductivity of γ-Y 2Si2O7, a high-temperature polymorph of yttrium disilicate, were investigated. The anisotropic thermal expansions of γ-Y2Si2O7 powders were examined using high-temperature X-ray diffractometer from 300 to 1373 K and the volumetric thermal expansion coefficient is (6.68±0.35) × 10-6 K-1. The linear thermal expansion coefficient of polycrystalline γ-Y2Si2O7 determined by push-rod dilatometer is (3.90±0.4) × 10-6 K-1, being very close to that of silicon nitride and silicon carbide. Besides, γ-Y2Si2O7 displays a low-thermal conductivity, with a κ value measured below 3.0 W·(m·K) -1 at the temperatures above 600 K. The calculated minimum thermal conductivity, κmin, was 1.35 W·(m·K) -1. The unique combination of low thermal expansion coefficient and low-thermal conductivity of γ-Y2Si2O7 renders it a very competitive candidate material for high temperature structural components and environmental/thermal-barrier coatings. The thermal shock resistance of γ-Y2Si2O7 was estimated by quenching dense materials in water from various temperatures and the critical temperature difference, ΔTc, was determined to be 300 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

γ-Y2Si2O7 is a promising candidate both for high temperature structural applications and as thermal barrier coatings due to its unique combination of properties, such as high melting point, good machinability, high thermal stability, low linear thermal expansion coefficient (3.9 × 10-6 K-1, 25-1400 °C) and low thermal conductivity (<3 W/m K above 300 °C). In this work, the hot corrosion behavior of γ-Y2Si2O7 in strongly basic Na2CO3 molten salt at 850-1000 °C for 20 h in flowing air was investigated. In the employed conditions, multi-layer corrosion scales with total thickness less than 90 μm were formed. At 850-900 °C, the outmost layer of the scale was composed of the reprecipitation of Y2O3, the bottom of a Si-rich Na2O·xSiO2 (x > 3.65) melt layer, and the middle of a NaYSiO4 layer. At 1000 °C, the corrosion products turned out to be a mixture of NaY9Si6O26 and Si-rich Na2O·xSiO2 (x > 3.65). In all cases, a thin layer of protective SiO2 formed under the Na2O·xSiO2 melt and protected the bulk material from further corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the mechanical properties of bulk single-phase γ-Y2Si2O7 ceramic are reported. γ-Y2Si2O7 exhibits low shear modulus, excellent damage tolerance, and thus has a good machinability ready for metal working tools. To understand the underlying mechanism of machinability, drilling test, Hertzian contact test, and density functional theory (DFT) calculation are employed. Hertzian contact test demonstrates that γ-Y2Si2O7 is a "quasi-plastic" ceramic and the intrinsically weak interfaces contribute to its machinability. Crystal structure characteristics and DFT calculations of γ-Y2Si2O7 suggest that some weakly bonded planes, which involve Y-O bonds that can be easily broken, are the sources of the low shear deformation resistance and good machinability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cool roof coatings have a beneficial impact on reducing the heat load of a range of building types, resulting in reduced cooling energy loads. This study seeks to understand the extent to which cool roof coatings could be used as a residential demand side management (DSM) strategy for retrofitting existing housing in a constrained network area in tropical Australia where peak electrical demand is heavily influenced by residential cooling loads. In particular this study seeks to determine whether simulation software used for building regulation purposes can provide networks with the ‘impact certainty’ required by their DSM principles. The building simulation method is supported by a field experiment. Both numerical and experimental data confirm reductions in total consumption (kWh) and energy demand (kW). The nature of the regulated simulation software, combined with the diverse nature of residential buildings and their patterns of occupancy, however, mean that simulated results cannot be extrapolated to quantify benefits to a broader distribution network. The study suggests that building data gained from regulatory simulations could be a useful guide for potential impacts of widespread application of cool roof coatings in this region. The practical realization of these positive impacts, however, would require changes to the current business model for the evaluation of DSM strategies. The study provides seven key recommendations that encourage distribution networks to think beyond their infrastructure boundaries, recognising that the broader energy system also includes buildings, appliances and people.