53 resultados para CaM
Resumo:
Background Delirium is a common underdiagnosed condition in advanced cancer leading to increased distress, morbidity, and mortality. Screening improves detection but there is no consensus as to the best screening tool to use with patients with advanced cancer. Objective To determine the incidence of delirium in patients with advanced cancer within 72 hours of admission to an acute inpatient hospice using clinical judgement and validated screening tools. Method One hundred consecutive patients with advanced cancer were invited to be screened for delirium within 72 hours of admission to an acute inpatient hospice unit. Two validated tools were used, the Delirium Rating Scale-Revised 98 (DRS-R-98) and the Confusion Assessment Method (CAM) shortened diagnostic algorithm. These results were compared with clinical assessment by review of medical charts. Results Of 100 consecutive admissions 51 participated and of these 22 (43.1%) screened positive for delirium with CAM and/or DRS-R-98 compared to 15 (29.4%) by clinical assessment. Eleven (21.6%) were identified as hypoactive delirium and 5 (9.8%) as subsyndromal delirium. Conclusion This study confirms that delirium is a common condition in patients with advanced cancer.While there remains a lack of consensus regarding the choice of delirium screening tool this study supports theCAMas being appropriate. Further research may determine the optimal screening tool for delirium enabling the development of best practice clinical guidelines for routinemedical practice.
Resumo:
A new mesh adaptivity algorithm that combines a posteriori error estimation with bubble-type local mesh generation (BLMG) strategy for elliptic differential equations is proposed. The size function used in the BLMG is defined on each vertex during the adaptive process based on the obtained error estimator. In order to avoid the excessive coarsening and refining in each iterative step, two factor thresholds are introduced in the size function. The advantages of the BLMG-based adaptive finite element method, compared with other known methods, are given as follows: the refining and coarsening are obtained fluently in the same framework; the local a posteriori error estimation is easy to implement through the adjacency list of the BLMG method; at all levels of refinement, the updated triangles remain very well shaped, even if the mesh size at any particular refinement level varies by several orders of magnitude. Several numerical examples with singularities for the elliptic problems, where the explicit error estimators are used, verify the efficiency of the algorithm. The analysis for the parameters introduced in the size function shows that the algorithm has good flexibility.
Resumo:
A 3hr large scale participatory installation/event that included live performance, video works,objects, fabric sculptures and was the result of a three month artist residency undertaken by Cam Lab (Jemima Wyman and Anna Mayer)at the Museum of Contemporary Art Los Angeles California. The exhibition transformed two adjoining spaces in the museum, taking design cues from permanent collection artworks currently on view and encouraged gallery visitors to oscillate between immersion and agency as they occupy the various perspectives proposed by the installation.
Resumo:
In this paper, a class of unconditionally stable difference schemes based on the Pad´e approximation is presented for the Riesz space-fractional telegraph equation. Firstly, we introduce a new variable to transform the original dfferential equation to an equivalent differential equation system. Then, we apply a second order fractional central difference scheme to discretise the Riesz space-fractional operator. Finally, we use (1, 1), (2, 2) and (3, 3) Pad´e approximations to give a fully discrete difference scheme for the resulting linear system of ordinary differential equations. Matrix analysis is used to show the unconditional stability of the proposed algorithms. Two examples with known exact solutions are chosen to assess the proposed difference schemes. Numerical results demonstrate that these schemes provide accurate and efficient methods for solving a space-fractional hyperbolic equation.
Resumo:
The recent trend for journals to require open access to primary data included in publications has been embraced by many biologists, but has caused apprehension amongst researchers engaged in long-term ecological and evolutionary studies. A worldwide survey of 73 principal investigators (Pls) with long-term studies revealed positive attitudes towards sharing data with the agreement or involvement of the PI, and 93% of PIs have historically shared data. Only 8% were in favor of uncontrolled, open access to primary data while 63% expressed serious concern. We present here their viewpoint on an issue that can have non-trivial scientific consequences. We discuss potential costs of public data archiving and provide possible solutions to meet the needs of journals and researchers.
Resumo:
In our recent paper [1], we discussed some potential undesirable consequences of public data archiving (PDA) with specific reference to long-term studies and proposed solutions to manage these issues. We reaffirm our commitment to data sharing and collaboration, both of which have been common and fruitful practices supported for many decades by researchers involved in long-term studies. We acknowledge the potential benefits of PDA (e.g., [2]), but believe that several potential negative consequences for science have been underestimated [1] (see also 3 and 4). The objective of our recent paper [1] was to define practices to simultaneously maximize the benefits and minimize the potential unwanted consequences of PDA.
Resumo:
In addition to functional and technological features, the role of augmented objects should also be seen in terms of how effectively they fit into the everyday practices of users and how they enhance users' experiences. In this article, the authors introduce a low-tech, internet-of-things technology called CAM (Cooperative Artefact Memory) that is used as a collaborative tool in design studio environments. CAM works as an object memory technology and allows industrial and product designers to collaboratively store relevant information onto their physical design objects, such as sketches, collages, storyboards, and physical mock-ups in the form of messages, annotations and external web links. In the context of this study, CAM serves as an important probing device to understand designers' interaction and experiences with augmented design objects, in their natural environment. The authors carried out a small-scale field trial of CAM in an academic design studio, over three student design projects. In this article, they discuss the findings of their field trial and show how CAM was used by the participants, how it was integrated into the design process and how it was appropriated for different purposes. The authors also found that CAM supported coordination and awareness within the design teams, yet its serendipitous and asynchronous nature facilitated creative and playful interactions between team members. In general, the results show how CAM transformed mundane design objects into “smart” objects that made the creative and playful side of cooperative design visible.
Resumo:
This thesis added new insight to research knowledge about the role that season and ultraviolet radiation (UV) exposure during pregnancy has on children's temperament and behaviours, using a nation-wide longitudinal study. It was found that young children born in summer months are likely to have problematic behaviours. The thesis also found that summer-born children are likely to receive lowest levels of UV exposure during the gestational period. Finally, this work showed that low gestational UV exposure is associated with an increased risk of behavioural problems in children.