377 resultados para C-condition
Resumo:
Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C.
Resumo:
Reliable budget/cost estimates for road maintenance and rehabilitation are subjected to uncertainties and variability in road asset condition and characteristics of road users. The CRC CI research project 2003-029-C ‘Maintenance Cost Prediction for Road’ developed a method for assessing variation and reliability in budget/cost estimates for road maintenance and rehabilitation. The method is based on probability-based reliable theory and statistical method. The next stage of the current project is to apply the developed method to predict maintenance/rehabilitation budgets/costs of large networks for strategic investment. The first task is to assess the variability of road data. This report presents initial results of the analysis in assessing the variability of road data. A case study of the analysis for dry non reactive soil is presented to demonstrate the concept in analysing the variability of road data for large road networks. In assessing the variability of road data, large road networks were categorised into categories with common characteristics according to soil and climatic conditions, pavement conditions, pavement types, surface types and annual average daily traffic. The probability distributions, statistical means, and standard deviation values of asset conditions and annual average daily traffic for each type were quantified. The probability distributions and the statistical information obtained in this analysis will be used to asset the variation and reliability in budget/cost estimates in later stage. Generally, we usually used mean values of asset data of each category as input values for investment analysis. The variability of asset data in each category is not taken into account. This analysis method demonstrated that it can be used for practical application taking into account the variability of road data in analysing large road networks for maintenance/rehabilitation investment analysis.
Resumo:
One of the key issues facing public asset owners is the decision of refurbishing aged built assets. This decision requires an assessment of the “remaining service life” of the key components in a building. The remaining service life is significantly dependent upon the existing condition of the asset and future degradation patterns considering durability and functional obsolescence. Recently developed methods on Residual Service Life modelling, require sophisticated data that are not readily available. Most of the data available are in the form of reports prior to undertaking major repairs or in the form of sessional audit reports. Valuable information from these available sources can serve as bench marks for estimating the reference service life. The authors have acquired similar informations from a public asset building in Melbourne. Using these informations, the residual service life of a case study building façade has been estimated in this paper based on state-of-the-art approaches. These estimations have been evaluated against expert opinion. Though the results are encouraging it is clear that the state-of-the-art methodologies can only provide meaningful estimates provided the level and quality of data are available. This investigation resulted in the development of a new framework for maintenance that integrates the condition assessment procedures and factors influencing residual service life
Resumo:
A broad range of motorcycle safety programs and systems exist in Australia and New Zealand. These vary from statewide licensing and training systems run by government licensing and transport agencies to safety programs run in small communities and by individual rider groups. While the effectiveness of licensing and training has been reviewed and recommendations for improvement have been developed (e.g. Haworth & Mulvihill, 2005), little is known about many smaller or innovative programs, and their potential to improve motorcycle safety in the ACT.
Resumo:
Queensland Department of Main Roads, Australia, spends approximately A$ 1 billion annually for road infrastructure asset management. To effectively manage road infrastructure, firstly road agencies not only need to optimise the expenditure for data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. This paper presents the results of case studies in using the probability-based method for an integrated approach (i.e. assessing optimal costs of pavement strength data collection; calibrating deterioration prediction models that suit local condition and assessing risk-adjusted budget estimates for road maintenance and rehabilitation for assessing life-cycle budget estimates). The probability concept is opening the path to having the means to predict life-cycle maintenance and rehabilitation budget estimates that have a known probability of success (e.g. produce budget estimates for a project life-cycle cost with 5% probability of exceeding). The paper also presents a conceptual decision-making framework in the form of risk mapping in which the life-cycle budget/cost investment could be considered in conjunction with social, environmental and political issues.
Resumo:
The highway express freight transportation (HEFT) is a new transportation organization form separated from the common freight transportation with economic development and incessant adjustment of highway transportation structure in China. At present, the phenomenon of inadaptability still exists in the HEFT system of China, from foundation structure like highways, parking lots and stations to transportation equipments and transportation organizing. In order to develop the HEFT system more rationally and effectively, we should start with the structure of the system, conform the resources existing, and consummate the freight transport system. In due course, relevant policies and measures to supervise, lead and support are necessary and important. This paper analyzes the existing problems of HEFT system in our country, based on its characteristics, development situation and adaptability, and presents the policy and measures of promoting and leading the development of the HEFT system.
Resumo:
The fracture healing process is modulated by the mechanical environment created by imposed loads and motion between the bone fragments. Contact between the fragments obviously results in a significantly different stress and strain environment to a uniform fracture gap containing only soft tissue (e.g. haematoma). The assumption of the latter in existing computational models of the healing process will hence exaggerate the inter-fragmentary strain in many clinically-relevant cases. To address this issue, we introduce the concept of a contact zone that represents a variable degree of contact between cortices by the relative proportions of bone and soft tissue present. This is introduced as an initial condition in a two-dimensional iterative finite element model of a healing tibial fracture, in which material properties are defined by the volume fractions of each tissue present. The algorithm governing the formation of cartilage and bone in the fracture callus uses fuzzy logic rules based on strain energy density resulting from axial compression. The model predicts that increasing the degree of initial bone contact reduces the amount of callus formed (periosteal callus thickness 3.1mm without contact, down to 0.5mm with 10% bone in contact zone). This is consistent with the greater effective stiffness in the contact zone and hence, a smaller inter-fragmentary strain. These results demonstrate that the contact zone strategy reasonably simulates the differences in the healing sequence resulting from the closeness of reduction.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
Being physically active during and following treatment for breast cancer has been associated with a range of benefits including improved fitness and function, body composition and immune function and reductions in stress, depression and anxiety, as well as the number and severity of treatment-related side-effects such as nausea, fatigue and pain, all of which contribute to improvements in quality of life. There is also emerging evidence linking active lifestyles with improved survival. Therefore, there is little doubt that participating in regular exercise following breast cancer is ‘good’. Unfortunately, research investigating the role of exercise for women considered at high-risk of lymphoedema or who have developed lymphedema following breast cancer is lacking. For fear of initiating or exacerbating lymphoedema, these women have traditionally been cautioned rather than encouraged to be regularly active. However, recent preliminary findings suggest that being inactive may increase risk of developing lymphedema, and that for those with lymphoedema, participation in an exercise program does not exacerbate the condition. This presentation will address what we know about the role of exercise following a breast cancer diagnosis and will provide some practical recommendations about becoming and staying regularly active following breast cancer, for those with and without lymphoedema.
Resumo:
Much of what we know about lymphoedema is derived from studies involving cancer cohorts, in particular breast cancer. Yet even within this setting, and despite the known profound physical, social and psychological effects, our understanding of associated risk factors and effectiveness of prevention and treatment strategies is poorly studied with inconsistent results. The limitations of our current methods to detect and monitor lymphoedema contribute to our lack of understanding of this condition. Current measurement approaches applied in the clinical and research setting will be described during this presentation. The strengths, limitations and practical considerations relevant to measurement methods will also be addressed. Improving the way we detect and monitor lymphoedema is necessary and critical for advancing the lymphoedema field and is relevant for the detection and monitoring of lymphoedema in the clinic as well as in research.
Resumo:
Research investigating the role of exercise in the prevention and/or management of lymphoedema is lacking. For fear of initiating or exacerbating lymphoedema, and its associated symptoms, those with lymphoedema have traditionally been cautioned against engaging in physical activity rather than encouraged to be regularly active. However, recent preliminary findings suggest that being inactive may increase risk of developing lymphedema, and that for those with lymphoedema, participation in an exercise program does not exacerbate the condition. This presentation will address why engaging in regular physical activity is important, what we know about the role of exercise with respect to lymphoedema prevention and management, and will provide some practical recommendations about becoming and staying regularly active for those with lymphoedema.
Resumo:
The aetiology of secondary lymphoedema seems to be multifactorial, with acquired abnormalities as well as pre-existing conditions being contributory factors. Many characteristics bear inconsistent relationships to lymphoedema risk, and the few that are consistently associated with an increased risk of developing the condition, do not alone distinguish the at-risk population. Further, our current prevention and management recommendations are not backed by strong evidence. Consequently, there remains much to be learned about who gets it, how can it be prevented and how can we best treat it. Nonetheless, it is clear that lymphoedema is associated with adverse side effects, which have a profound impact on daily life, and that preliminary evidence suggests that early detection may lead to more effective treatment and lack of treatment may lead to progression. These represent important reasons as to why lymphoedema deserves clinical attention. However, several pragmatic issues must be considered when discussing whether a routine objective measure of lymphoedema could be integrated among the standard clinical care of those undertaking treatment for cancers known to be associated with the development of lymphoedema.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
A complete series of cross-sectional computed tomography (CT) scans were obtained of a mummy of an Egyptian priestess, Tjenmutengebtiu, (Jeni), who lived in the twenty-second Dynasty (c. 945-715 BC). The purpose of this joint British Museum and St. Thomas’ Hospital project was effectively to ‘unwrap’ a mummy using cross-sectional X-rays. Jeni is encased in a beautifully decorated anthropomorphic cartonnage coffin. The head and neck were scanned with 2mm slices, the teeth with 1mm slices and the rest of the body with 4 mm slices, a 512 x 512 matrix was used. The 2D CT images, and 3D surface reconstruction’s, demonstrate many features of the embalming techniques and funerary customs of the XXII Dynasty. The presence of cloth protruding from the nasal cavities into the otherwise empty cranial cavity indicates that the brain was extracted via the nose. The remains of the heart can be seen as well as four organ packs corresponding to the mummified and repackaged lungs, intestines, stomach and liver. Each of the organ packs encloses a wax figurine representing one of the four sons of Horus. The teeth are in very good condition with little signs of wear, which, considering the gritty diet of the Egyptians, indicates that Jeni must have been very young when she died. A young age of death is also suggested by analysis of the shape of the molar teeth. The body is generally in very good condition demonstrating the consummate skill of the twenty-second Dynasty embalmers.