386 resultados para Bivariate Gaussian distribution
Resumo:
In this paper, the placement of sectionalizers, as well as, a cross-connection is optimally determined so that the objective function is minimized. The objective function employed in this paper consists of two main parts, the switch cost and the reliability cost. The switch cost is composed of the cost of sectionalizers and cross-connection and the reliability cost is assumed to be proportional to a reliability index, SAIDI. To optimize the allocation of sectionalizers and cross-connection problem realistically, the cost related to each element is considered as discrete. In consequence of binary variables for the availability of sectionalizers, the problem is extremely discrete. Therefore, the probability of local minimum risk is high and a heuristic-based optimization method is needed. A Discrete Particle Swarm Optimization (DPSO) is employed in this paper to deal with this discrete problem. Finally, a testing distribution system is used to validate the proposed method.
Resumo:
Isolation of a faulted segment, from either side of a fault, in a radial feeder that has several converter interfaced DGs is a challenging task when current sensing protective devices are employed. The protective device, even if it senses a downstream fault, may not operate if fault current level is low due to the current limiting operation of converters. In this paper, a new inverse type relay is introduced based on line admittance measurement to protect a distribution network, which has several converter interfaced DGs. The basic operation of this relay, its grading and reach settings are explained. Moreover a method is proposed to compensate the fault resistance such that the relay operation under this condition is reliable. Then designed relay performances are evaluated in a radial distribution network. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.
Resumo:
Dispersion characteristics of respiratory droplets in indoor environments are of special interest in controlling transmission of airborne diseases. This study adopts an Eulerian method to investigate the spatial concentration distribution and temporal evolution of exhaled and sneezed/coughed droplets within the range of 1.0~10.0μm in an office room with three air distribution methods, i.e. mixing ventilation (MV), displacement ventilation (DV), and under-floor air distribution (UFAD). The diffusion, gravitational settling, and deposition mechanism of particulate matters are well accounted in the one-way coupling Eulerian approach. The simulation results find that exhaled droplets with diameters up to 10.0μm from normal respiration process are uniformly distributed in MV, while they are trapped in the breathing height by thermal stratifications in DV and UFAD, resulting in a high droplet concentration and a high exposure risk to other occupants. Sneezed/coughed droplets are diluted much slower in DV/UFAD than in MV. Low air speed in the breathing zone in DV/UFAD can lead to prolonged residence of droplets in the breathing zone.
Resumo:
The distribution network reliability can be increased if distributed generators (DGs) are allowed to operate in both grid-connected and islanded operations when the network has a high DG penetration level. However, the current utility regulations do not allow for the islanded operation. The arc faults are the one of the major issues preventing the islanded operation, since the arc will not extinguish if the DGs are not disconnected. In this paper, the effect of a converter interfaced DG on an arc fault is investigated by considering different control strategies for the converter. The foldback current control characteristic is proposed to a converter interfaced DG to achieve quick arc extinction and self-restoration without disconnecting the DG in the event of an arc fault. The results are validated through PSCAD/EMTDC simulations.
Resumo:
Citrus canker is a disease of citrus and closely related species, caused by the bacterium Xanthomonas citri subsp. citri. This disease, previously exotic to Australia, was detected on a single farm [infested premise-1, (IP1). IP is the terminology used in official biosecurity protocols to describe a locality at which an exotic plant pest has been confirmed or is presumed to exist. IP are numbered sequentially as they are detected] in Emerald, Queensland in July 2004. During the following 10 months the disease was subsequently detected on two other farms (IP2 and IP3) within the same area and studies indicated the disease first occurred on IP1 and spread to IP2 and IP3. The oldest, naturally infected plant tissue observed on any of these farms indicated the disease was present on IP1 for several months before detection and established on IP2 and IP3 during the second quarter (i.e. autumn) 2004. Transect studies on some IP1 blocks showed disease incidences ranged between 52 and 100% (trees infected). This contrasted to very low disease incidence, less than 4% of trees within a block, on IP2 and IP3. The mechanisms proposed for disease spread within blocks include weather-assisted dispersal of the bacterium (e.g. wind-driven rain) and movement of contaminated farm equipment, in particular by pivot irrigator towers via mechanical damage in combination with abundant water. Spread between blocks on IP2 was attributed to movement of contaminated farm equipment and/or people. Epidemiology results suggest: (i) successive surveillance rounds increase the likelihood of disease detection; (ii) surveillance sensitivity is affected by tree size; and (iii) individual destruction zones (for the purpose of eradication) could be determined using disease incidence and severity data rather than a predefined set area.
Resumo:
Bag sampling techniques can be used to temporarily store an aerosol and therefore provide sufficient time to utilize sensitive but slow instrumental techniques for recording detailed particle size distributions. Laboratory based assessment of the method were conducted to examine size dependant deposition loss coefficients for aerosols held in VelostatTM bags conforming to a horizontal cylindrical geometry. Deposition losses of NaCl particles in the range of 10 nm to 160 nm were analysed in relation to the bag size, storage time, and sampling flow rate. Results of this study suggest that the bag sampling method is most useful for moderately short sampling periods of about 5 minutes.
Resumo:
-
Resumo:
1. Species' distribution modelling relies on adequate data sets to build reliable statistical models with high predictive ability. However, the money spent collecting empirical data might be better spent on management. A less expensive source of species' distribution information is expert opinion. This study evaluates expert knowledge and its source. In particular, we determine whether models built on expert knowledge apply over multiple regions or only within the region where the knowledge was derived. 2. The case study focuses on the distribution of the brush-tailed rock-wallaby Petrogale penicillata in eastern Australia. We brought together from two biogeographically different regions substantial and well-designed field data and knowledge from nine experts. We used a novel elicitation tool within a geographical information system to systematically collect expert opinions. The tool utilized an indirect approach to elicitation, asking experts simpler questions about observable rather than abstract quantities, with measures in place to identify uncertainty and offer feedback. Bayesian analysis was used to combine field data and expert knowledge in each region to determine: (i) how expert opinion affected models based on field data and (ii) how similar expert-informed models were within regions and across regions. 3. The elicitation tool effectively captured the experts' opinions and their uncertainties. Experts were comfortable with the map-based elicitation approach used, especially with graphical feedback. Experts tended to predict lower values of species occurrence compared with field data. 4. Across experts, consensus on effect sizes occurred for several habitat variables. Expert opinion generally influenced predictions from field data. However, south-east Queensland and north-east New South Wales experts had different opinions on the influence of elevation and geology, with these differences attributable to geological differences between these regions. 5. Synthesis and applications. When formulated as priors in Bayesian analysis, expert opinion is useful for modifying or strengthening patterns exhibited by empirical data sets that are limited in size or scope. Nevertheless, the ability of an expert to extrapolate beyond their region of knowledge may be poor. Hence there is significant merit in obtaining information from local experts when compiling species' distribution models across several regions.
Resumo:
This paper presents a reliability-based reconfiguration methodology for power distribution systems. Probabilistic reliability models of the system components are considered and Monte Carlo method is used while evaluating the reliability of the distribution system. The reconfiguration is aimed at maximizing the reliability of the power supplied to the customers. A binary particle swarm optimization (BPSO) algorithm is used as a tool to determine the optimal configuration of the sectionalizing and tie switches in the system. The proposed methodology is applied on a modified IEEE 13-bus distribution system.
Resumo:
Financial processes may possess long memory and their probability densities may display heavy tails. Many models have been developed to deal with this tail behaviour, which reflects the jumps in the sample paths. On the other hand, the presence of long memory, which contradicts the efficient market hypothesis, is still an issue for further debates. These difficulties present challenges with the problems of memory detection and modelling the co-presence of long memory and heavy tails. This PhD project aims to respond to these challenges. The first part aims to detect memory in a large number of financial time series on stock prices and exchange rates using their scaling properties. Since financial time series often exhibit stochastic trends, a common form of nonstationarity, strong trends in the data can lead to false detection of memory. We will take advantage of a technique known as multifractal detrended fluctuation analysis (MF-DFA) that can systematically eliminate trends of different orders. This method is based on the identification of scaling of the q-th-order moments and is a generalisation of the standard detrended fluctuation analysis (DFA) which uses only the second moment; that is, q = 2. We also consider the rescaled range R/S analysis and the periodogram method to detect memory in financial time series and compare their results with the MF-DFA. An interesting finding is that short memory is detected for stock prices of the American Stock Exchange (AMEX) and long memory is found present in the time series of two exchange rates, namely the French franc and the Deutsche mark. Electricity price series of the five states of Australia are also found to possess long memory. For these electricity price series, heavy tails are also pronounced in their probability densities. The second part of the thesis develops models to represent short-memory and longmemory financial processes as detected in Part I. These models take the form of continuous-time AR(∞) -type equations whose kernel is the Laplace transform of a finite Borel measure. By imposing appropriate conditions on this measure, short memory or long memory in the dynamics of the solution will result. A specific form of the models, which has a good MA(∞) -type representation, is presented for the short memory case. Parameter estimation of this type of models is performed via least squares, and the models are applied to the stock prices in the AMEX, which have been established in Part I to possess short memory. By selecting the kernel in the continuous-time AR(∞) -type equations to have the form of Riemann-Liouville fractional derivative, we obtain a fractional stochastic differential equation driven by Brownian motion. This type of equations is used to represent financial processes with long memory, whose dynamics is described by the fractional derivative in the equation. These models are estimated via quasi-likelihood, namely via a continuoustime version of the Gauss-Whittle method. The models are applied to the exchange rates and the electricity prices of Part I with the aim of confirming their possible long-range dependence established by MF-DFA. The third part of the thesis provides an application of the results established in Parts I and II to characterise and classify financial markets. We will pay attention to the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), the NASDAQ Stock Exchange (NASDAQ) and the Toronto Stock Exchange (TSX). The parameters from MF-DFA and those of the short-memory AR(∞) -type models will be employed in this classification. We propose the Fisher discriminant algorithm to find a classifier in the two and three-dimensional spaces of data sets and then provide cross-validation to verify discriminant accuracies. This classification is useful for understanding and predicting the behaviour of different processes within the same market. The fourth part of the thesis investigates the heavy-tailed behaviour of financial processes which may also possess long memory. We consider fractional stochastic differential equations driven by stable noise to model financial processes such as electricity prices. The long memory of electricity prices is represented by a fractional derivative, while the stable noise input models their non-Gaussianity via the tails of their probability density. A method using the empirical densities and MF-DFA will be provided to estimate all the parameters of the model and simulate sample paths of the equation. The method is then applied to analyse daily spot prices for five states of Australia. Comparison with the results obtained from the R/S analysis, periodogram method and MF-DFA are provided. The results from fractional SDEs agree with those from MF-DFA, which are based on multifractal scaling, while those from the periodograms, which are based on the second order, seem to underestimate the long memory dynamics of the process. This highlights the need and usefulness of fractal methods in modelling non-Gaussian financial processes with long memory.
Resumo:
In this paper, we present a finite sample analysis of the sample minimum-variance frontier under the assumption that the returns are independent and multivariate normally distributed. We show that the sample minimum-variance frontier is a highly biased estimator of the population frontier, and we propose an improved estimator of the population frontier. In addition, we provide the exact distribution of the out-of-sample mean and variance of sample minimum-variance portfolios. This allows us to understand the impact of estimation error on the performance of in-sample optimal portfolios. Key Words: minimum-variance frontier; efficiency set constants; finite sample distribution
Resumo:
A comprehensive voltage imbalance sensitivity analysis and stochastic evaluation based on the rating and location of single-phase grid-connected rooftop photovoltaic cells (PVs) in a residential low voltage distribution network are presented. The voltage imbalance at different locations along a feeder is investigated. In addition, the sensitivity analysis is performed for voltage imbalance in one feeder when PVs are installed in other feeders of the network. A stochastic evaluation based on Monte Carlo method is carried out to investigate the risk index of the non-standard voltage imbalance in the network in the presence of PVs. The network voltage imbalance characteristic based on different criteria of PV rating and location and network conditions is generalized. Improvement methods are proposed for voltage imbalance reduction and their efficacy is verified by comparing their risk index using Monte Carlo simulations.