136 resultados para Biossensores "chip-sized"
Resumo:
Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence commercialization, is referred to as the ‘Valley of Death’ and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes (GMP) and scalable designs and to apply these in pre-clinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopaedic bone engineering from bench to bedside byestablishing a pre-clinical ovine critical-sized tibial segmental bone defect model and discuss our preliminary data relating to this decisive step.
Resumo:
A surface plasmon resonance-based solution affinity assay is described for measuring the Kd of binding of heparin/heparan sulfate-binding proteins with a variety of ligands. The assay involves the passage of a pre-equilibrated solution of protein and ligand over a sensor chip onto which heparin has been immobilised. Heparin sensor chips prepared by four different methods, including biotin–streptavidin affinity capture and direct covalent attachment to the chip surface, were successfully used in the assay and gave similar Kd values. The assay is applicable to a wide variety of heparin/HS-binding proteins of diverse structure and function (e.g., FGF-1, FGF-2, VEGF, IL-8, MCP-2, ATIII, PF4) and to ligands of varying molecular weight and degree of sulfation (e.g., heparin, PI-88, sucrose octasulfate, naphthalene trisulfonate) and is thus well suited for the rapid screening of ligands in drug discovery applications.
Resumo:
This paper aimed to explore the proportion associated with the perceived importance and the actual use of performance indicators from manufacturing and non manufacturing industries. The sample was 86 small and medium sized-organizations in Thailand. The perceived importance and the actual use of financial and non financial indicators were found to be significantly related among manufacturing and non manufacturing industries. KPI 3, 9, and 12 (i.e. sales and sales growth; quality of products and /or services; and process time) were perceived the most importance among manufacturing managers (85.3%, 79.4% and 76.5% respectively). While KPI 6, 9, and 12 (i.e. customer satisfaction, quality of products and /or services; and process time) were perceived the most importance among non manufacturing managers (84.8%, 93.5%, and 84.8% respectively). Interestingly, the most used KPIs for manufacturing were sales and sales growth (64.7%); profit margins (61.8%); and customer satisfaction (84.8) while non manufacturing used quality products/services (60.9%); sales and sales growth (54.3%) and employee development (54.3%) respectively. Limitation and implication were also discussed.
Resumo:
The advantages of using a balanced approach to measurement of overall organisational performance are well-known. We examined the effects of a balanced approach in the more specific domain of measuring innovation effectiveness in 144 small to medium sized companies in Australia and Thailand. We found that there were no differences in the metrics used by Australian and Thai companies. In line with our hypotheses, we found that those SMEs that took a balanced approach were more likely to perceive benefits of implemented innovations than those that used only a financial approach to measurement. The perception of benefits then had a subsequent effect on overall attitudes towards innovation. The study shows the importance of measuring both financial and non-financial indicators of innovation effectiveness within SMEs and discusses ways in which these can be conducted with limited resources.
Resumo:
President’s Message Hello fellow AITPM members, Due to three colliding forces of nature I find myself writing this month’s message from home – today, I am still getting over a persistent virus that seemed to set in just after returning from Singapore a couple of weeks ago, which my diabetes won’t let me get away with too easily (no Kermit the Frog swine flu jokes please). Combine this with a very wet day in Brisbane – in fact the wettest for 20 years (how can we complain, except for flash flooding?). And in Queensland today is a state school teachers’ strike, so one half of our brood is over watching TV. Family snapshots aside, the biggest news for our industry of late is the $8.5 billion announced in the Federal Budget for transport infrastructure projects; many “shovel ready”, but some – and fortunate for our profession – desktop ready. This newsletter provides nationwide coverage on the transport infrastructure aspects of the Federal Budget. We’ll need a bit more time to carefully look at the ensuing State Budgets’ announcements. Regarding the federal budget announcements, I am pleased to see serious attention being paid to upgrading the M1 system – I hope to see a motorway standard facility connecting Adelaide to at least Rockhampton in my lifetime. But some other important roads are of course missing out in this particular budget. Various levels of commitment are being made to urban passenger rail – some project significant while others planning significant. Enhancement of suburban rail is important across the capitals and Australia’s medium sized cities such as the Gold Coast and Newcastle. Not much on road safety initiatives jumped out at me, but I believe it is implied in the large road projects and in some of the detail elsewhere. I do believe it’s about time a ‘Vision Zero’ style policy is adopted at the National level, since any death is unacceptable on the road, just as it is in any other workplace. So, overall some good news on building transport infrastructure to keep the economy purring during this recession, and strongly supporting it during future boom times. The other edge to the sword, of course, is that we tax payers will be paying a considerable amount for borrowings for these projects over a long period of time. I close again in reminding everyone again that AITPM’s flagship event, the 2009 AITPM National Conference, Traffic Beyond Tomorrow, is being held in Adelaide from 5 to 7 August. www.aitpm.com has all of the details about how to register, sponsor a booth, session, etc. Best regards all, Jon Bunker
Resumo:
President’s Message AITPM President’s Message, July 2009 Hello fellow AITPM members, It’s now very early July so many Australians are going to experience a range of new, or increases in, fees, charges, and perhaps taxes by State and local governments. For example, Queenslanders are to be hit at the petrol pump, no longer living with the luxury of the State’s previous 8c per litre fuel subsidy, bringing general motorists’ fuel costs into line with the other States. A consolation is that they now don’t have to live with the real or perceived “price gouging” that has appeared in the past to make Queensland prices much closer than 8c to those in other States. Environmental lobbyists argue that this Government’s decision brings public transport costs closer to parity with private transport. However, my sense from sloppy petrol price elasticities is that the State’s motorists will get used to the reversal of what was a reverse tax pretty quickly, an amount which can be less than day-of-the week fluctuation. On the other hand, withholding this State revenue may help in some way the funding of the several major public transport infrastructure projects in progress; not to mention some of the cost of running the Transit Authority’s expanding service commitments. Other policy actions, such as a Federal Government review of taxation on employees’ package vehicles, which might discourage rather than encourage excess kilometres travelled, may have a greater environmental benefit. Of course, a downside is that many vehicles used so are Australian built, and discouraging fleet turnover may damage an industry which faces ever increasing uncertainty, and particularly at the present, is in need of some care and attention. I for one hope to this end that the new 4 cylinder (1.8L petrol or 2L diesel) so called “true Holden” Cruze and Toyota’s pending Camry Hybrid are both roaring successes, and will be taken up in droves as fleet and employee use vehicles. I’m not sure what drive-trains Ford and Holden plan to drop into their next full sized models but even if they’re not Australian sourced, let’s hope they coordinate the requisite performance expected by the “Aussie Battler” with suitable green credentials. I am also encouraged to see that already many Government fleet vehicles are smaller in size, but still fit for purpose. For instance, my local police station uses the Camry based Aurion as a district car. I close again in reminding everyone that AITPM’s flagship event, the 2009 AITPM National Conference, Traffic Beyond Tomorrow, is being held in Adelaide from 5 to 7 August. www.aitpm.com has all of the details about how to register, sponsor a booth, session, etc. Best regards all, Jon Bunker
Resumo:
Bone morphogenetic proteins (BMPs) have been widely investigated for their clinical use in bone repair and it is known that a suitable carrier matrix to deliver them is essential for optimal bone regeneration within a specific defect site. Fused deposited modeling (FDM) allows for the fabrication of medical grade poly 3-caprolactone/tricalcium phosphate (mPCL–TCP) scaffolds with high reproducibility and tailor designed dimensions. Here we loaded FDM fabricated mPCL–TCP/collagen scaffolds with 5 mg recombinant human (rh)BMP-2 and evaluated bone healing within a rat calvarial critical-sized defect. Using a comprehensive approach, this study assessed the newly regenerated bone employing microcomputed tomography (mCT), histology/histomorphometry, and mechanical assessments. By 15 weeks, mPCL–TCP/collagen/rhBMP-2 defects exhibited complete healing of the calvarium whereas the non- BMP-2-loaded scaffolds showed significant less bone ingrowth, as confirmed by mCT. Histomorphometry revealed significantly increased bone healing amongst the rhBMP-2 groups compared to non-treated scaffolds at 4 and 15 weeks, although the % BV/TV did not indicate complete mineralisation of the entire defect site. Hence, our study confirms that it is important to combine microCt and histomorphometry to be able to study bone regeneration comprehensively in 3D. A significant up-regulation of the osteogenic proteins, type I collagen and osteocalcin, was evident at both time points in rhBMP-2 groups. Although mineral apposition rates at 15 weeks were statistically equivalent amongst treatment groups, microcompression and push-out strengths indicated superior bone quality at 15 weeks for defects treated with mPCL–TCP/collagen/rhBMP-2. Consistently over all modalities, the progression of healing was from empty defect < mPCL–TCP/collagen < mPCL–TCP/collagen/rhBMP-2, providing substantiating data to support the hypothesis that the release of rhBMP-2 from FDM-created mPCL–TCP/collagen scaffolds is a clinically relevant approach to repair and regenerate critically-sized craniofacial bone defects. Crown Copyright 2008 Published by Elsevier Ltd. All rights reserved.
Theoretical and numerical investigation of plasmon nanofocusing in metallic tapered rods and grooves
Resumo:
Effective focusing of electromagnetic (EM) energy to nanoscale regions is one of the major challenges in nano-photonics and plasmonics. The strong localization of the optical energy into regions much smaller than allowed by the diffraction limit, also called nanofocusing, offers promising applications in nano-sensor technology, nanofabrication, near-field optics or spectroscopy. One of the most promising solutions to the problem of efficient nanofocusing is related to surface plasmon propagation in metallic structures. Metallic tapered rods, commonly used as probes in near field microscopy and spectroscopy, are of a particular interest. They can provide very strong EM field enhancement at the tip due to surface plasmons (SP’s) propagating towards the tip of the tapered metal rod. A large number of studies have been devoted to the manufacturing process of tapered rods or tapered fibers coated by a metal film. On the other hand, structures such as metallic V-grooves or metal wedges can also provide strong electric field enhancements but manufacturing of these structures is still a challenge. It has been shown, however, that the attainable electric field enhancement at the apex in the V-groove is higher than at the tip of a metal tapered rod when the dissipation level in the metal is strong. Metallic V-grooves also have very promising characteristics as plasmonic waveguides. This thesis will present a thorough theoretical and numerical investigation of nanofocusing during plasmon propagation along a metal tapered rod and into a metallic V-groove. Optimal structural parameters including optimal taper angle, taper length and shape of the taper are determined in order to achieve maximum field enhancement factors at the tip of the nanofocusing structure. An analytical investigation of plasmon nanofocusing by metal tapered rods is carried out by means of the geometric optics approximation (GOA), which is also called adiabatic nanofocusing. However, GOA is applicable only for analysing tapered structures with small taper angles and without considering a terminating tip structure in order to neglect reflections. Rigorous numerical methods are employed for analysing non-adiabatic nanofocusing, by tapered rod and V-grooves with larger taper angles and with a rounded tip. These structures cannot be studied by analytical methods due to the presence of reflected waves from the taper section, the tip and also from (artificial) computational boundaries. A new method is introduced to combine the advantages of GOA and rigorous numerical methods in order to reduce significantly the use of computational resources and yet achieve accurate results for the analysis of large tapered structures, within reasonable calculation time. Detailed comparison between GOA and rigorous numerical methods will be carried out in order to find the critical taper angle of the tapered structures at which GOA is still applicable. It will be demonstrated that optimal taper angles, at which maximum field enhancements occur, coincide with the critical angles, at which GOA is still applicable. It will be shown that the applicability of GOA can be substantially expanded to include structures which could be analysed previously by numerical methods only. The influence of the rounded tip, the taper angle and the role of dissipation onto the plasmon field distribution along the tapered rod and near the tip will be analysed analytically and numerically in detail. It will be demonstrated that electric field enhancement factors of up to ~ 2500 within nanoscale regions are predicted. These are sufficient, for instance, to detect single molecules using surface enhanced Raman spectroscopy (SERS) with the tip of a tapered rod, an approach also known as tip enhanced Raman spectroscopy or TERS. The results obtained in this project will be important for applications for which strong local field enhancement factors are crucial for the performance of devices such as near field microscopes or spectroscopy. The optimal design of nanofocusing structures, at which the delivery of electromagnetic energy to the nanometer region is most efficient, will lead to new applications in near field sensors, near field measuring technology, or generation of nanometer sized energy sources. This includes: applications in tip enhanced Raman spectroscopy (TERS); manipulation of nanoparticles and molecules; efficient coupling of optical energy into and out of plasmonic circuits; second harmonic generation in non-linear optics; or delivery of energy to quantum dots, for instance, for quantum computations.
Resumo:
Introduction: The Google Online Marketing Challenge is a global competition in which student teams run advertising campaigns for small and medium-sized businesses (SMEs) using AdWords, Google’s text-based advertisements. In 2008, its inaugural year, over 8,000 students and 300 instructors from 47 countries representing over 200 schools participated. The Challenge ran in undergraduate and graduate classes in disciplines such as marketing, tourism, advertising, communication and information systems. Combining advertising and education, the Challenge gives student hands-on experience in the increasingly important field of online marketing, engages them with local businesses and motivates them through the thrill of a global competition. Student teams receive US$200 in AdWords credits, Google’s premier advertising product that offers cost-per-click advertisements. The teams then recruit and work with a local business to devise an effective online marketing campaign. Students first outline a strategy, run a series of campaigns, and provide their business with recommendations to improve their online marketing. Teams submit two written reports for judging by 14 academics in eight countries. In addition, Google AdWords experts judge teams on their campaign statistics such as success metrics and account management. Rather than a marketing simulation against a computer or hypothetical marketing plans for hypothetical businesses, the Challenges has student teams develop and manage real online advertising campaigns for their clients and compete against peers globally.
Resumo:
Train scheduling is a complex and time consuming task of vital importance. To schedule trains more accurately and efficiently than permitted by current techniques a novel hybrid job shop approach has been proposed and implemented. Unique characteristics of train scheduling are first incorporated into a disjunctive graph model of train operations. A constructive algorithm that utilises this model is then developed. The constructive algorithm is a general procedure that constructs a schedule using insertion, backtracking and dynamic route selection mechanisms. It provides a significant search capability and is valid for any objective criteria. Simulated Annealing and Local Search meta-heuristic improvement algorithms are also adapted and extended. An important feature of these approaches is a new compound perturbation operator that consists of many unitary moves that allows trains to be shifted feasibly and more easily within the solution. A numerical investigation and case study is provided and demonstrates that high quality solutions are obtainable on real sized applications.
Resumo:
This article examines the continued relevance of the 16-19 business education curriculum in the UK, stimulated by doubts expressed by Thomas (1996), over its continued relevance. We express a concern that business education needs, but is struggling, to respond to significant societal shifts in consumption and production strategies that do not sit easily within traditional theories of business practice currently underpinning 16-19 business education. We examine firstly, the extent to which a formal body of knowledge couched in a modernist discourse of facts and objectivity can cope with the changing and fluid developments in much current business practice that is rooted in the cultural and symbolic. Secondly, the extent to which both academic and vocational competences provide the means for students to develop a framework of critical understanding that can respond effectively to rapidly changing business environments.Findings are based on research conducted jointly by the University of Manchester and the Manchester Institute for Popular Culture at Manchester Metropolitan University. The growth of dynamism of the cultural industries sector - largely micro-businesses and small and medium sized enterprises (SMEs) -encapsulates forms of business knowledge, business language and business practice which may not immediately fit with the models provided within business education. Results suggest increasingly reflexive forms of consumption being met by similarly reflexive and flexible modes of production.Our evidence suggests that whilst modernist business knowledge is often the foundation for many 16-19 business education courses, these programmes of study/training do not usually reflect the activities of SME and micro-business practitioners in the cultural industries. Given the importance of cultural industries in terms of the production strategies required to meet increasingly reflexive markets, it is suggested that there may be a need to incorporate a postmodern approach to the current content and pedagogy; one that is contextual, cultural and discursive.
Resumo:
Motor vehicles are a major source of gaseous and particulate matter pollution in urban areas, particularly of ultrafine sized particles (diameters < 0.1 µm). Exposure to particulate matter has been found to be associated with serious health effects, including respiratory and cardiovascular disease, and mortality. Particle emissions generated by motor vehicles span a very broad size range (from around 0.003-10 µm) and are measured as different subsets of particle mass concentrations or particle number count. However, there exist scientific challenges in analysing and interpreting the large data sets on motor vehicle emission factors, and no understanding is available of the application of different particle metrics as a basis for air quality regulation. To date a comprehensive inventory covering the broad size range of particles emitted by motor vehicles, and which includes particle number, does not exist anywhere in the world. This thesis covers research related to four important and interrelated aspects pertaining to particulate matter generated by motor vehicle fleets. These include the derivation of suitable particle emission factors for use in transport modelling and health impact assessments; quantification of motor vehicle particle emission inventories; investigation of the particle characteristic modality within particle size distributions as a potential for developing air quality regulation; and review and synthesis of current knowledge on ultrafine particles as it relates to motor vehicles; and the application of these aspects to the quantification, control and management of motor vehicle particle emissions. In order to quantify emissions in terms of a comprehensive inventory, which covers the full size range of particles emitted by motor vehicle fleets, it was necessary to derive a suitable set of particle emission factors for different vehicle and road type combinations for particle number, particle volume, PM1, PM2.5 and PM1 (mass concentration of particles with aerodynamic diameters < 1 µm, < 2.5 µm and < 10 µm respectively). The very large data set of emission factors analysed in this study were sourced from measurement studies conducted in developed countries, and hence the derived set of emission factors are suitable for preparing inventories in other urban regions of the developed world. These emission factors are particularly useful for regions with a lack of measurement data to derive emission factors, or where experimental data are available but are of insufficient scope. The comprehensive particle emissions inventory presented in this thesis is the first published inventory of tailpipe particle emissions prepared for a motor vehicle fleet, and included the quantification of particle emissions covering the full size range of particles emitted by vehicles, based on measurement data. The inventory quantified particle emissions measured in terms of particle number and different particle mass size fractions. It was developed for the urban South-East Queensland fleet in Australia, and included testing the particle emission implications of future scenarios for different passenger and freight travel demand. The thesis also presents evidence of the usefulness of examining modality within particle size distributions as a basis for developing air quality regulations; and finds evidence to support the relevance of introducing a new PM1 mass ambient air quality standard for the majority of environments worldwide. The study found that a combination of PM1 and PM10 standards are likely to be a more discerning and suitable set of ambient air quality standards for controlling particles emitted from combustion and mechanically-generated sources, such as motor vehicles, than the current mass standards of PM2.5 and PM10. The study also reviewed and synthesized existing knowledge on ultrafine particles, with a specific focus on those originating from motor vehicles. It found that motor vehicles are significant contributors to both air pollution and ultrafine particles in urban areas, and that a standardized measurement procedure is not currently available for ultrafine particles. The review found discrepancies exist between outcomes of instrumentation used to measure ultrafine particles; that few data is available on ultrafine particle chemistry and composition, long term monitoring; characterization of their spatial and temporal distribution in urban areas; and that no inventories for particle number are available for motor vehicle fleets. This knowledge is critical for epidemiological studies and exposure-response assessment. Conclusions from this review included the recommendation that ultrafine particles in populated urban areas be considered a likely target for future air quality regulation based on particle number, due to their potential impacts on the environment. The research in this PhD thesis successfully integrated the elements needed to quantify and manage motor vehicle fleet emissions, and its novelty relates to the combining of expertise from two distinctly separate disciplines - from aerosol science and transport modelling. The new knowledge and concepts developed in this PhD research provide never before available data and methods which can be used to develop comprehensive, size-resolved inventories of motor vehicle particle emissions, and air quality regulations to control particle emissions to protect the health and well-being of current and future generations.
Resumo:
A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.
Resumo:
Here, we demonstrate that efficient nano-optical couplers can be developed using closely spaced gap plasmon waveguides in the form of two parallel nano-sized rectangular slots in a thin metal film or membrane. Using the rigorous numerical finite-difference and finite element algorithms, we investigate the physical mechanisms of coupling between two neighboring gap plasmon waveguides and determine typical coupling lengths for different structural parameters of the coupler. Special attention is focused onto the analysis of the effect of such major coupler parameters, such as thickness of the metal film/membrane, slot width, and separation between the plasmonic waveguides. Detailed physical interpretation of the obtained unusual dependencies of the coupling length on slot width and film thickness is presented based upon the energy consideration. The obtained results will be important for the optimization and experimental development of plasmonic sub-wavelength compact directional couplers and other nano-optical devices for integrated nanophotonics.
Resumo:
Conventional clinical therapies are unable to resolve osteochondral defects adequately, hence tissue engineering solutions are sought to address the challenge. A biphasic implant which was seeded with Mesenchymal Stem Cells (MSC) and coupled with an electrospun membrane was evaluated as an alternative. This dual phase construct comprised of a Polycaprolactone (PCL) cartilage scaffold and a Polycaprolactone - Tri Calcium Phosphate (PCL - TCP) osseous matrix. Autologous MSC was seeded into the entire implant via fibrin and the construct was inserted into critically sized osteochondral defects located at the medial condyle and patellar groove of pigs. The defect was resurfaced with a PCL - collagen electrospun mesh that served as a substitute for periosteal flap in preventing cell leakage. Controls either without implanted MSC or resurfacing membrane were included. After 6 months, cartilaginous repair was observed with a low occurrence of fibrocartilage at the medial condyle. Osteochondral repair was promoted and host cartilage degeneration was arrested as shown by the superior Glycosaminoglycan (GAG) maintenance. This positive morphological outcome was supported by a higher relative Young's modulus which indicated functional cartilage restoration. Bone in growth and remodeling occurred in all groups with a higher degree of mineralization in the experimental group. Tissue repair was compromised in the absence of the implanted cells or the resurfacing membrane. Moreover healing was inferior at the patellar groove as compared to the medial condyle and this was attributed to the native biomechanical features.