515 resultados para Bayesian Modeling Averaging
Resumo:
Bayesian Belief Networks (BBNs) are emerging as valuable tools for investigating complex ecological problems. In a BBN, the important variables in a problem are identified and causal relationships are represented graphically. Underpinning this is the probabilistic framework in which variables can take on a finite range of mutually exclusive states. Associated with each variable is a conditional probability table (CPT), showing the probability of a variable attaining each of its possible states conditioned on all possible combinations of it parents. Whilst the variables (nodes) are connected, the CPT attached to each node can be quantified independently. This allows each variable to be populated with the best data available, including expert opinion, simulation results or observed data. It also allows the information to be easily updated as better data become available ----- ----- This paper reports on the process of developing a BBN to better understand the initial rapid growth phase (initiation) of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay, Queensland. Anecdotal evidence suggests that Lyngbya blooms in this region have increased in severity and extent over the past decade. Lyngbya has been associated with acute dermatitis and a range of other health problems in humans. Blooms have been linked to ecosystem degradation and have also damaged commercial and recreational fisheries. However, the causes of blooms are as yet poorly understood.
Resumo:
The integrated and process oriented nature of Enterprise Systems (ES) has led organizations to use process modeling as an aid in managing these systems. Enterprise Systems success factor studies explicitly and implicitly state the importance of process modeling and its contribution to overall Enterprise System success. However, no empirical evidence exists on how to conduct process modeling successfully and possibly differentially in the main phases of the ES life-cycle. This paper reports on an empirical investigation of the factors that influence process modeling success. An a-priori model with 8 candidate success factors has been developed to this stage. This paper introduces the research context and objectives, describes the research design and the derived model, and concludes by looking ahead to the next phases of the research design.
Resumo:
In Service-Oriented Architectures (SOAs), software systems are decomposed into independent units, namely services, that interact with one another through message exchanges. To promote reuse and evolvability, these interactions are explicitly described right from the early phases of the development lifecycle. Up to now, emphasis has been placed on capturing structural aspects of service interactions. Gradually though, the description of behavioral dependencies between service interactions is gaining increasing attention as a means to push forward the SOA vision. This paper deals with the description of these behavioral dependencies during the analysis and design phases. The paper outlines a set of requirements that a language for modeling service interactions at this level should fulfill, and proposes a language whose design is driven by these requirements.
Resumo:
Business process modeling has undoubtedly emerged as a popular and relevant practice in Information Systems. Despite being an actively researched field, anecdotal evidence and experiences suggest that the focus of the research community is not always well aligned with the needs of industry. The main aim of this paper is, accordingly, to explore the current issues and the future challenges in business process modeling, as perceived by three key stakeholder groups (academics, practitioners, and tool vendors). We present the results of a global Delphi study with these three groups of stakeholders, and discuss the findings and their implications for research and practice. Our findings suggest that the critical areas of concern are standardization of modeling approaches, identification of the value proposition of business process modeling, and model-driven process execution. These areas are also expected to persist as business process modeling roadblocks in the future.