61 resultados para BR-D96N
Resumo:
We initially described a rat chamber model with an inserted arteriovenous pedicle which spontaneously generates 3-dimensional vascularized connective tissue (Tanaka Y et al., Br J Plast Surg 2000; 53: 51-7). More recently we have developed a murine chamber model containing reconstituted basement membrane (Matrigel®) and FGF-2 that generates vascularized adipose tissue in vivo (Cronin K et al., Plast Reconstr Surg 2004; in press). We have extended this work to assess the cellular and matrix requirements for the Matrigel®- induced neo-adipogenesis. We found that chambers sealed to host fat were unable to grow new adipose tissue. In these chambers the Matrigel® became vascularized with maximal outgrowth of vessels extending to the periphery at 6 weeks. A small amount of adipose tissue was found adjacent to the vessels, most likely arising from periadventitial adipose tissue. In contrast, chambers open to interaction with endogenous adipose tissue showed abundant new fat, and partial exposure to adjacent adipose tissue clearly showed neo-adipogenesis only in this area. Addition of small amounts of free fat to the closed chamber containing Matrigel® was able to induce neo-adipogenesis. Addition of small pieces of human fat also caused neo-adipogenesis in immunocompromised (SCID) mice. Also, we found Matrigel® to induce adipogenesis of Lac-Z-tagged (Rosa-26) murine bone marrow-derived mesenchymal stem cells, and cells similar to these have been isolated from human adipose tissue. Given that Matrigel® is a mouse product and cannot be used in humans, we have started investigating alternative matrix scaffolds for adipogenesis such as the PDA-approved PLGA, collagen and purified components derived from Matrigel®, such as laminin-1. The optimal conditions for adipogenesis with these matrices are still being elucidated. In conclusion, we have demonstrated that a precursor cell source inside the chamber is essential for the generation of vascularized adipose tissue in vivo. This technique offers unique potential for the reconstruction of soft tissue defects and may enable the generation of site-specific tissue using the correct microenvironment.
Resumo:
The last two decades have witnessed a fragmentation of previously integrated systems of production and service delivery with the advent of boundary-less, networked and porous organisational forms. This trend has been associated with the growth of outsourcing and increased use of contingent workers. One consequence of these changes is the development of production/service delivery systems based on complex national and international networks of multi-tiered subcontracting increasingly labelled as supply chains. A growing body of research indicates that subcontracting and contingent work arrangements affect design and decision-making processes in ways that can seriously undermine occupational health and safety (OHS). Elaborate supply chains also present a regulatory challenge because legal responsibility for OHS is diffused amongst a wider array of parties, targeting key decision-makers is more difficult, and government agencies encounter greater logistical difficulties trying to safeguard contingent workers. In a number of industries these problems have prompted new forms of regulatory intervention, including mechanisms for sheeting legal responsibility to the top of supply chains, contractual tracking devices and increasing industry, union and community involvement in enforcement. After describing the problems just alluded to this paper examines recent efforts to regulate supply chains to safeguard OHS in the United Kingdom and Australia.
Resumo:
Barbadocladius n. gen. is erected and described in larval, pupal and adult stages for two species: B. andinus sp. nov. and B. limay sp. nov., from Andean streams. The larva is distinctive by virtue of the very large ventromental 'beard' and the anterior parapods with a 'sleeve' of hooklets in addition to apical pectinate claws. The pupa has hooklets on some tergal and sternal intersegmental membranes. The adult, reported only in teneral specimens has hairy eyes, no antennal apical strong seta, no acrostichals, bare and unmarked wings, cylindrical 4th tarsomere subequal in length to the 5th, pulvilli about half the claw length, and hypopygium with anal point, lacking a virga. Molecular phylogenetic analysis eliminates relationships directly to the Eukiefferiella complex (which also have pupal hooklets), or to the Cricotopus group (adults also with hairy eyes), suggesting instead a sister group relationship to a suite of predominantly austral genera of Orthocladiinae.
Resumo:
Many of the 5,500 threatened species of vertebrates found worldwide are highly protected and generally unavailable for scientific investigation. Here we describe a noninvasive protocol to visualize the structure and size of brain in postmortem specimens. We demonstrate its utility by examining four endangered species of kiwi (Apteryx spp.). Frozen specimens are thawed and imaged using MRI, revealing internal details of brain structure. External brain morphology and an estimate of brain volume can be reliably obtained by creating 3D models. This method has facilitated a comparison of brain structure in the different kiwi species, one of which is on the brink of extinction. This new approach has the potential to extend our knowledge of brain structure to species that have until now been outside the reach of anatomical investigation.
Resumo:
Transfusion-related acute lung injury (TRALI) has been the leading cause of transfusion-related morbidity and mortality in the UK and the USA in recent years. A threshold mechanism of TRALI has been proposed in which both patient factors (type and/or severity of clinical insult) and blood product factors (strength and/or concentration of antibodies or biological response modifiers) interact to surpass a threshold for TRALI development (Bux et al. Br J Haematol; 2007; 136: 788-99). The risk of developing antibody-mediated TRALI has been minimised by the introduction of risk-reduction strategies such as limiting the use of plasma from female donors. In contrast, there are no strategies currently in place to mitigate the development of non-antibody mediated TRALI as the mechanisms remain largely undefined. Previous studies have implicated non-polar lipids such as arachidonic acid and various species of hydroxyeicosatetranoic acid (HETE) in the development of non-antibody mediated TRALI (Silliman et al. Transfusion; 2011; 51: 2549-54), however the contribution of these lipids to the development of an inflammatory response in TRALI is poorly understood.
Resumo:
Global climate change will affect all domains of person-environment relations. Tackling climate change will require social change that can be motivated by people’s imaginings of the future of their society where such social change has occurred. We use the “collective futures” framework to examine whether beliefs about the future of society are related to present-day intentions to take climate change action. Participants from two Brazilian samples imagined their society in 2050 where climate change was mitigated and then rated how this future society would differ from Brazilian society today in terms of societal-level dysfunction and development and personal-level traits and values. To the extent that participants believed preventing climate change would result in societal development and more competence traits, they were more willing to engage in environmental citizenship activities. Individual differences in future time perspective also impacted environmental citizenship intention. Societal development and consideration of future consequences seem to be distinct routes by which future thinking influence climate change action.
Resumo:
The structures of the 1:1 co-crystalline adduct C8H6BrN3S . C7H5NO4 (I) and the salt C8H7BrN3S+ C7H3N2O7- (II) from the interaction of 5-(4-bromophenyl)-1,3,4-thiadiazol-2-amine with 4-nitrobenzoic acid and 3,5-dinitrosalicylic acid, respectively, have been determined. The primary inter-species association in both (I) and (II) is through duplex R2/2(8) (N-H...O/O-H...O) or (N-H...O/N-H...O) hydrogen bonds, respectively, giving heterodimers. In (II), these are close to planar [dihedral angles between the thiadiazole ring and the two phenyl rings are 2.1(3)deg. (intra) and 9.8(2)deg. (inter)], while in (I) these angles are 22.11(15) and 26.08(18)deg., respectively. In the crystal of (I), the heterodimers are extended into a one-dimensional chain along b through an amine N-...N(thiadiazole) hydrogen bond but in (II), a centrosymmetric cyclic heterotetramer structure is generated through N-H...O hydrogen bonds to phenol and nitro O-atom acceptors and features, together with the primary R2/2(8) interaction, conjoined R4/6(12), R2/1(6) and S(6) ring motifs. Also present in (I) are pi--pi interactions between thiadiazole rings [minimum ring centroid separation, 3.4624(16)deg.] as well as short Br...O(nitro) interactions in both (I) and (II) [3.296(3)A and 3.104(3)A, respectively].
Resumo:
To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.
Resumo:
This study focuses on the experiences of 91 Grade 4 students who had been introduced to expectation and variation through trials of tossing a single coin many times. They were then given two coins to toss simultaneously and asked to state their expectation of the chances for the possible outcomes, in a similar manner expressed for a single coin. This paper documents the journey of the students in discovering that generally their initial expectation for two coins was incorrect and that despite variation, a large number of tosses could confirm a new expectation.
Resumo:
In this article, we report the crystal structures of five halogen bonded co-crystals comprising quaternary ammonium cations, halide anions (Cl– and Br–), and one of either 1,2-, 1,3-, or 1,4-diiodotetrafluorobenzene (DITFB). Three of the co-crystals are chemical isomers: 1,4-DITFB[TEA-CH2Cl]Cl, 1,2-DITFB[TEA-CH2Cl]Cl, and 1,3-DITFB[TEA-CH2Cl]Cl (where TEA-CH2Cl is chloromethyltriethylammonium ion). In each structure, the chloride anions link DITFB molecules through halogen bonds to produce 1D chains propagating with (a) linear topology in the structure containing 1,4-DITFB, (b) zigzag topology with 60° angle of propagation in that containing 1,2-DITFB, and (c) 120° angle of propagation with 1,3-DITFB. While the individual chains have highly distinctive and different topologies, they combine through π-stacking of the DITFB molecules to produce remarkably similar overall arrangements of molecules. Structures of 1,4-DITFB[TEA-CH2Br]Br and 1,3-DITFB[TEA-CH2Br]Br are also reported and are isomorphous with their chloro/chloride analogues, further illustrating the robustness of the overall supramolecular architecture. The usual approach to crystal engineering is to make structural changes to molecular components to effect specific changes to the resulting crystal structure. The results reported herein encourage pursuit of a somewhat different approach to crystal engineering. That is, to investigate the possibilities for engineering the same overall arrangement of molecules in crystals while employing molecular components that aggregate with entirely different supramolecular connectivity.
Resumo:
This study examines a matrix of synthetic water samples designed to include conditions that favour brominated disinfection by-product (Br-DBP) formation, in order to provide predictive models suitable for high Br-DBP forming waters such as salinity-impacted waters. Br-DBPs are known to be more toxic than their chlorinated analogues, in general, and their formation may be favoured by routine water treatment practices such as coagulation/flocculation under specific conditions; therefore, circumstances surrounding their formation must be understood. The chosen factors were bromide concentration, mineral alkalinity, bromide to dissolved organic carbon (Br/DOC) ratio and Suwannee River natural organic matter concentration. The relationships between these parameters and DBP formation were evaluated by response surface modelling of data generated using a face-centred central composite experimental design. Predictive models for ten brominated and/or chlorinated DBPs are presented, as well as models for total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs), and bromide substitution factors for the THMs and DHANs classes. The relationships described revealed that increasing alkalinity and increasing Br/DOC ratio were associated with increasing bromination of THMs and DHANs, suggesting that DOC lowering treatment methods that do not also remove bromide such as enhanced coagulation may create optimal conditions for Br-DBP formation in waters in which bromide is present.
Resumo:
Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid–solid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular Br⋯Br and Br⋯H bonding. We find that the S⋯S interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.
Resumo:
This research presents findings of a research project where the first author worked with a small to medium sized enterprise (SME) manufacturing company in order to integrate design at a strategic level within the company. This study aims to identify the changes experienced in the participating company while shifting the perspective of design from a product focus towards a strategic focus. Staff interviews at two points in time and a reflective journal were used as data sources within an action research methodology. A shift in the perspective of design was noted in three cultural changes within the firm over time: a focus on long term as well as short term outcomes, on indirect as well as direct value and on intangible as well as tangible benefits. These three components are proposed as ‘cultural stepping stones’ that describe how a company transitions from an exclusively product- focused utilisation of design, to a process-level application of design. Implications of this research are provided as considerations for businesses that are attempting to facilitate a similar transformation in the future.
Resumo:
The single electron transfer-nitroxide radical coupling (SET-NRC) reaction has been used to produce multiblock polymers with high molecular weights in under 3 min at 50◦C by coupling a difunctional telechelic polystyrene (Br-PSTY-Br)with a dinitroxide. The well known combination of dimethyl sulfoxide as solvent and Me6TREN as ligand facilitated the in situ disproportionation of CuIBr to the highly active nascent Cu0 species. This SET reaction allowed polymeric radicals to be rapidly formed from their corresponding halide end-groups. Trapping of these carbon-centred radicals at close to diffusion controlled rates by dinitroxides resulted in high-molecular-weight multiblock polymers. Our results showed that the disproportionation of CuI was critical in obtaining these ultrafast reactions, and confirmed that activation was primarily through Cu0. We took advantage of the reversibility of the NRC reaction at elevated temperatures to decouple the multiblock back to the original PSTY building block through capping the chain-ends with mono-functional nitroxides. These alkoxyamine end-groups were further exchanged with an alkyne mono-functional nitroxide (TEMPO–≡) and ‘clicked’ by a CuI-catalyzed azide/alkyne cycloaddition (CuAAC) reaction with N3–PSTY–N3 to reform the multiblocks. This final ‘click’ reaction, even after the consecutive decoupling and nitroxide-exchange reactions, still produced high molecular-weight multiblocks efficiently. These SET-NRC reactions would have ideal applications in re-usable plastics and possibly as self-healing materials.
Resumo:
High activation of polystyrene with bromine end groups (PSTY-Br) to their incipient radicals occurred in the presence of Cu(I)Br, Me6TREN, and DMSO solvent. These radicals were then trapped by nitroxide species leading to coupling reactions between PSTY-Br and nitroxides that were ultrafast and selective in the presence of a diverse range of functional groups. The nitroxide radical coupling (NRC) reactions have the attributes of a “click” reaction with near quantitative yields of product formed, but through the reversibility of this reaction, it has the added advantage of permitting the exchange of chemical functionality on macromolecules. Conditions were chosen to facilitate the disproportionation of Cu(I)Br to the highly activating nascent Cu(0) and deactivating Cu(II)Br2 in the presence of DMSO solvent and Me6TREN ligand. NRC at room temperature gave near quantitative yields of macromolecular coupling of low molecular weight polystyrene with bromine chain-ends (PSTY-Br) and nitroxides in under 7 min even in the presence of functional groups (e.g., −≡, −OH, −COOH, −NH2, =O). Utilization of the reversibility of the NRC reaction at elevated temperatures allowed the exchange of chain-end groups with a variety of functional nitroxide derivatives. The robustness and orthogonality of this NRC reaction were further demonstrated using the Cu-catalyzed azide/alkyne “click” (CuAAC) reactions, in which yields greater than 95% were observed for coupling between PSTY-N3 and a PSTY chain first trapped with an alkyne functional TEMPO (PSTY-TEMPO-≡).