58 resultados para BINARY-MIXTURES
Resumo:
Effluent from sewage treatment plants has been associated with a range of pollutant effects. Depending on the influent composition and treatment processes the effluent may contain a myriad of different chemicals which makes monitoring very complex. In this study we aimed to monitor relatively polar organic pollutant mixtures using a combination of passive sampling techniques and a set of biochemistry based assays covering acute bacterial toxicity (Microtox™), phytotoxicity (Max-I-PAM assay) and genotoxicity (umuC assay). The study showed that all of the assays were able to detect effects in the samples and allowed a comparison of the two plants as well as a comparison between the two sampling periods. Distinct improvements in water quality were observed in one of the plants as result of an upgrade to a UV disinfection system, which improved from 24× sample enrichment required to induce a 50% response in the Microtox™ assay to 84×, from 30× sample enrichment to induce a 50% reduction in photosynthetic yield to 125×, and the genotoxicity observed in the first sampling period was eliminated. Thus we propose that biochemical assay techniques in combination with time integrated passive sampling can substantially contribute to the monitoring of polar organic toxicants in STP effluents.
Resumo:
In North America and Europe, the binary toxin positive Clostridium difficile strains of the ribotypes 027 and 078 have been associated with death, toxic megacolon and other adverse outcomes. Following an increase in C. difficile infections (CDIs) in Queensland, a prevalence study involving 175 hospitals was undertaken in early 2012, identifying 168 cases of CDI over a 2 month period. Patient demographics and clinical characteristics were recorded, and C. difficile isolates were ribotyped and tested for the presence of binary toxin genes. Most patients (106/168, 63.1%) were aged over 60 years. Overall, 98 (58.3%) developed symptoms after hospitalisation; 89 cases (53.0%) developed symptoms more than 48 hours after admission. Furthermore, 27 of the 62 (67.7%) patients who developed symptoms in the community ad been hospitalised within the last 3 months. Thirteen of the 168 (7.7%) cases identified had severe disease, resulting in admission to the Intensive Care Unit or death within 30 days of the onset of symptoms. The 3 most common ribotypes isolated were UK 002 (22.9%), UK 014 (13.3%) and the binary toxin-positive ribotype UK 244 (8.4%). The only other binary toxin positive ribotype isolated was UK 078 (n = 1). Of concern was the detection of the binary toxin positive ribotype UK 244, which has recently been described in other parts of Australia and New Zealand. No isolates were of the international epidemic clone of ribotype UK 027, although ribotype UK 244 is genetically related to this clone. Further studies are required to track the epidemiology of ribotype UK 244 in Australia and New Zealand. Commun Dis Intell 2014;38(4):E279–E284.
Resumo:
The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA) and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) mixtures were studied by the Fenton oxidation process. Central composite design and multi-response surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was < 0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass%, pH 5.39, 35.98 °C) were 77% and 57% respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/Vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose, and coprecipitated with lepidocrocite, an iron oxyhydroxide.
Resumo:
In this paper, we propose a highly reliable fault diagnosis scheme for incipient low-speed rolling element bearing failures. The scheme consists of fault feature calculation, discriminative fault feature analysis, and fault classification. The proposed approach first computes wavelet-based fault features, including the respective relative wavelet packet node energy and entropy, by applying a wavelet packet transform to an incoming acoustic emission signal. The most discriminative fault features are then filtered from the originally produced feature vector by using discriminative fault feature analysis based on a binary bat algorithm (BBA). Finally, the proposed approach employs one-against-all multiclass support vector machines to identify multiple low-speed rolling element bearing defects. This study compares the proposed BBA-based dimensionality reduction scheme with four other dimensionality reduction methodologies in terms of classification performance. Experimental results show that the proposed methodology is superior to other dimensionality reduction approaches, yielding an average classification accuracy of 94.9%, 95.8%, and 98.4% under bearing rotational speeds at 20 revolutions-per-minute (RPM), 80 RPM, and 140 RPM, respectively.
Resumo:
The objective of this study was to determine the influence of lactose carrier size on drug dispersion of salmeterol xinafoate (SX) from interactive mixtures. SX dispersion was measured by using the fine particle fractions determined by a twin stage impinger attached to a Rotahaler1. The particle size of the lactose carrier in the SX interactive mixtures was varied using a range of commercial inhalation-grade lactoses. In addition, differing size fractions of individual lactose samples were achieved by dry sieving. The dispersion ofSXappeared to increase as the particle size of the lactose carrier decreased for the mixtures prepared from different particle size commercial samples of lactose and from different sieve fractions of the same lactose. Fine particles of lactose (<5 mm) associated with the lactose carrier were removed from the carrier surface by a wet decantation process to produce lactose samples with low but similar concentrations of fine lactose particles. The fine particle fractions of SX in mixtures prepared with the decanted lactose decreased significantly (analysis of variance, p<0.001) and the degree of dispersion became independent of the volume mean diameter of the carriers (analysis of variance, p<0.05). The dispersion behavior is therefore associated with the presence of fine adhered particles associated with the carriers and the inherent size of the carrier itself has little influence on dispersion.
Resumo:
Purpose The role of fine lactose in the dispersion of salmeterol xinafoate (SX) from lactose mixtures was studied by modifying the fine lactose concentration on the surface of the lactose carriers using wet decantation. Methods Fine lactose was removed from lactose carriers by wet decantation using ethanol saturated with lactose. Particle sizing was achieved by laser diffraction. Fine particle fractions (FPFs) were determined by Twin Stage Impinger using a 2.5% SX mixture, and SX was analyzed by a validated high-performance liquid chromatography method. Adhesion forces between probes of SX and silica and the lactose surfaces were determined by atomic force microscopy. Results FPFs of SX were related to fine lactose concentration in the mixture for inhalation grade lactose samples. Reductions in FPF (2-4-fold) of Aeroflo 95 and 65 were observed after removing fine lactose by wet decantation; FPFs reverted to original values after addition of micronized lactose to decanted mixtures. FPFs of SX of sieved and decanted fractions of Aeroflo carriers were significantly different (p < 0.001). The relationship between FPF and fine lactose concentration was linear. Decanted lactose demonstrated surface modification through increased SX-lactose adhesion forces; however, any surface modification other than removal of fine lactose only slightly influenced FPF. Conclusions Fine lactose played a key and dominating role in controlling FPF. SX to fine lactose ratios influenced dispersion of SX with maximum dispersion occurring as the ratio approached unity.
Resumo:
This paper discusses three different ways of applying the single-objective binary genetic algorithm into designing the wind farm. The introduction of different applications is through altering the binary encoding methods in GA codes. The first encoding method is the traditional one with fixed wind turbine positions. The second involves varying the initial positions from results of the first method, and it is achieved by using binary digits to represent the coordination of wind turbine on X or Y axis. The third is the mixing of the first encoding method with another one, which is by adding four more binary digits to represent one of the unavailable plots. The goal of this paper is to demonstrate how the single-objective binary algorithm can be applied and how the wind turbines are distributed under various conditions with best fitness. The main emphasis of discussion is focused on the scenario of wind direction varying from 0° to 45°. Results show that choosing the appropriate position of wind turbines is more significant than choosing the wind turbine numbers, considering that the former has a bigger influence on the whole farm fitness than the latter. And the farm has best performance of fitness values, farm efficiency, and total power with the direction between 20°to 30°.
Resumo:
The process of spray drying is applied in a number of contexts. One such application is the production of a synthetic rock used for storage of nuclear waste. To establish a framework for a model of the spray drying process for this application, we here develop a model describing evaporation from droplets of pure water, such that the model may be extended to account for the presence of colloid within the droplet. We develop a spherically-symmetric model and formulate continuum equations describing mass, momentum, and energy balance in both the liquid and gas phases from first principles. We establish appropriate boundary conditions at the surface of the droplet, including a generalised Clapeyron equation that accurately describes the temperature at the surface of the droplet. To account for experiment design, we introduce a simplified platinum ball and wire model into the system using a thin wire problem. The resulting system of equations is transformed in order to simplify a finite volume solution scheme. The results from numerical simulation are compared with data collected for validation, and the sensitivity of the model to variations in key parameters, and to the use of Clausius–Clapeyron and generalised Clapeyron equations, is investigated. Good agreement is found between the model and experimental data, despite the simplicity of the platinum phase model.
Resumo:
In school environments, children are constantly exposed to mixtures of airborne substances, derived from a variety of sources, both in the classroom and in the school surroundings. It is important to evaluate the hazardous properties of these mixtures, in order to conduct risk assessments of their impact on chil¬dren’s health. Within this context, through the application of a Maximum Cumulative Ratio approach, this study aimed to explore whether health risks due to indoor air mixtures are driven by a single substance or are due to cumulative exposure to various substances. This methodology requires knowledge of the concentration of substances in the air mixture, together with a health related weighting factor (i.e. reference concentration or lowest concentration of interest), which is necessary to calculate the Hazard Index. Maximum cumulative ratio and Hazard Index values were then used to categorise the mixtures into four groups, based on their hazard potential and therefore, appropriate risk management strategies. Air samples were collected from classrooms in 25 primary schools in Brisbane, Australia. Analysis was conducted based on the measured concentration of these substances in about 300 air samples. The results showed that in 92% of the schools, indoor air mixtures belonged to the ‘low concern’ group and therefore, they did not require any further assessment. In the remaining schools, toxicity was mainly governed by a single substance, with a very small number of schools having a multiple substance mix which required a combined risk assessment. The proposed approach enables the identification of such schools and thus, aides in the efficient health risk management of pollution emissions and air quality in the school environment.
Resumo:
The family of location and scale mixtures of Gaussians has the ability to generate a number of flexible distributional forms. The family nests as particular cases several important asymmetric distributions like the Generalized Hyperbolic distribution. The Generalized Hyperbolic distribution in turn nests many other well known distributions such as the Normal Inverse Gaussian. In a multivariate setting, an extension of the standard location and scale mixture concept is proposed into a so called multiple scaled framework which has the advantage of allowing different tail and skewness behaviours in each dimension with arbitrary correlation between dimensions. Estimation of the parameters is provided via an EM algorithm and extended to cover the case of mixtures of such multiple scaled distributions for application to clustering. Assessments on simulated and real data confirm the gain in degrees of freedom and flexibility in modelling data of varying tail behaviour and directional shape.
Resumo:
This paper presents an effective classification method based on Support Vector Machines (SVM) in the context of activity recognition. Local features that capture both spatial and temporal information in activity videos have made significant progress recently. Efficient and effective features, feature representation and classification plays a crucial role in activity recognition. For classification, SVMs are popularly used because of their simplicity and efficiency; however the common multi-class SVM approaches applied suffer from limitations including having easily confused classes and been computationally inefficient. We propose using a binary tree SVM to address the shortcomings of multi-class SVMs in activity recognition. We proposed constructing a binary tree using Gaussian Mixture Models (GMM), where activities are repeatedly allocated to subnodes until every new created node contains only one activity. Then, for each internal node a separate SVM is learned to classify activities, which significantly reduces the training time and increases the speed of testing compared to popular the `one-against-the-rest' multi-class SVM classifier. Experiments carried out on the challenging and complex Hollywood dataset demonstrates comparable performance over the baseline bag-of-features method.