130 resultados para Automatic Inference
Resumo:
This paper presents a fault diagnosis method based on adaptive neuro-fuzzy inference system (ANFIS) in combination with decision trees. Classification and regression tree (CART) which is one of the decision tree methods is used as a feature selection procedure to select pertinent features from data set. The crisp rules obtained from the decision tree are then converted to fuzzy if-then rules that are employed to identify the structure of ANFIS classifier. The hybrid of back-propagation and least squares algorithm are utilized to tune the parameters of the membership functions. In order to evaluate the proposed algorithm, the data sets obtained from vibration signals and current signals of the induction motors are used. The results indicate that the CART–ANFIS model has potential for fault diagnosis of induction motors.
Resumo:
As the popularity of video as an information medium rises, the amount of video content that we produce and archive keeps growing. This creates a demand for shorter representations of videos in order to assist the task of video retrieval. The traditional solution is to let humans watch these videos and write textual summaries based on what they saw. This summarisation process, however, is time-consuming. Moreover, a lot of useful audio-visual information contained in the original video can be lost. Video summarisation aims to turn a full-length video into a more concise version that preserves as much information as possible. The problem of video summarisation is to minimise the trade-off between how concise and how representative a summary is. There are also usability concerns that need to be addressed in a video summarisation scheme. To solve these problems, this research aims to create an automatic video summarisation framework that combines and improves on existing video summarisation techniques, with the focus on practicality and user satisfaction. We also investigate the need for different summarisation strategies in different kinds of videos, for example news, sports, or TV series. Finally, we develop a video summarisation system based on the framework, which is validated by subjective and objective evaluation. The evaluation results shows that the proposed framework is effective for creating video skims, producing high user satisfaction rate and having reasonably low computing requirement. We also demonstrate that the techniques presented in this research can be used for visualising video summaries in the form web pages showing various useful information, both from the video itself and from external sources.
Resumo:
An automatic approach to road lane marking extraction from high-resolution aerial images is proposed, which can automatically detect the road surfaces in rural areas based on hierarchical image analysis. The procedure is facilitated by the road centrelines obtained from low-resolution images. The lane markings are further extracted on the generated road surfaces with 2D Gabor filters. The proposed method is applied on the aerial images of the Bruce Highway around Gympie, Queensland. Evaluation of the generated road surfaces and lane markings using four representative test fields has validated the proposed method.
Resumo:
Video surveillance systems using Closed Circuit Television (CCTV) cameras, is one of the fastest growing areas in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. This work attempts to address these problems by proposing an automatic suspicious behaviour detection which utilises contextual information. The utilisation of contextual information is done via three main components: a context space model, a data stream clustering algorithm, and an inference algorithm. The utilisation of contextual information is still limited in the domain of suspicious behaviour detection. Furthermore, it is nearly impossible to correctly understand human behaviour without considering the context where it is observed. This work presents experiments using video feeds taken from CAVIAR dataset and a camera mounted on one of the buildings Z-Block) at the Queensland University of Technology, Australia. From these experiments, it is shown that by exploiting contextual information, the proposed system is able to make more accurate detections, especially of those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information gives critical feedback to the system designers to refine the system.
Resumo:
Automatic species recognition plays an important role in assisting ecologists to monitor the environment. One critical issue in this research area is that software developers need prior knowledge of specific targets people are interested in to build templates for these targets. This paper proposes a novel approach for automatic species recognition based on generic knowledge about acoustic events to detect species. Acoustic component detection is the most critical and fundamental part of this proposed approach. This paper gives clear definitions of acoustic components and presents three clustering algorithms for detecting four acoustic components in sound recordings; whistles, clicks, slurs, and blocks. The experiment result demonstrates that these acoustic component recognisers have achieved high precision and recall rate.
Resumo:
The automated extraction of roads from aerial imagery can be of value for tasks including mapping, surveillance and change detection. Unfortunately, there are no public databases or standard evaluation protocols for evaluating these techniques. Many techniques are further hindered by a reliance on manual initialisation, making large scale application of the techniques impractical. In this paper, we present a public database and evaluation protocol for the evaluation of road extraction algorithms, and propose an improved automatic seed finding technique to initialise road extraction, based on a combination of geometric and colour features.
Resumo:
Recent studies on automatic new topic identification in Web search engine user sessions demonstrated that neural networks are successful in automatic new topic identification. However most of this work applied their new topic identification algorithms on data logs from a single search engine. In this study, we investigate whether the application of neural networks for automatic new topic identification are more successful on some search engines than others. Sample data logs from the Norwegian search engine FAST (currently owned by Overture) and Excite are used in this study. Findings of this study suggest that query logs with more topic shifts tend to provide more successful results on shift-based performance measures, whereas logs with more topic continuations tend to provide better results on continuation-based performance measures.
Resumo:
Object segmentation is one of the fundamental steps for a number of robotic applications such as manipulation, object detection, and obstacle avoidance. This paper proposes a visual method for incorporating colour and depth information from sequential multiview stereo images to segment objects of interest from complex and cluttered environments. Rather than segmenting objects using information from a single frame in the sequence, we incorporate information from neighbouring views to increase the reliability of the information and improve the overall segmentation result. Specifically, dense depth information of a scene is computed using multiple view stereo. Depths from neighbouring views are reprojected into the reference frame to be segmented compensating for imperfect depth computations for individual frames. The multiple depth layers are then combined with color information from the reference frame to create a Markov random field to model the segmentation problem. Finally, graphcut optimisation is employed to infer pixels belonging to the object to be segmented. The segmentation accuracy is evaluated over images from an outdoor video sequence demonstrating the viability for automatic object segmentation for mobile robots using monocular cameras as a primary sensor.
Resumo:
In this study we set out to dissociate the developmental time course of automatic symbolic number processing and cognitive control functions in grade 1-3 British primary school children. Event-related potential (ERP) and behavioral data were collected in a physical size discrimination numerical Stroop task. Task-irrelevant numerical information was processed automatically already in grade 1. Weakening interference and strengthening facilitation indicated the parallel development of general cognitive control and automatic number processing. Relationships among ERP and behavioral effects suggest that control functions play a larger role in younger children and that automaticity of number processing increases from grade 1 to 3.
Resumo:
For more than a decade research in the field of context aware computing has aimed to find ways to exploit situational information that can be detected by mobile computing and sensor technologies. The goal is to provide people with new and improved applications, enhanced functionality and better use experience (Dey, 2001). Early applications focused on representing or computing on physical parameters, such as showing your location and the location of people or things around you. Such applications might show where the next bus is, which of your friends is in the vicinity and so on. With the advent of social networking software and microblogging sites such as Facebook and Twitter, recommender systems and so on context-aware computing is moving towards mining the social web in order to provide better representations and understanding of context, including social context. In this paper we begin by recapping different theoretical framings of context. We then discuss the problem of context- aware computing from a design perspective.
Resumo:
Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large amounts of money due to product recalls, consumer impact and subsequent loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and microorganisms to enter the package. In the food processing and packaging industry worldwide, there is an increasing demand for cost effective state of the art inspection technologies that are capable of reliably detecting leaky seals and delivering products at six-sigma. The new technology will develop non-destructive testing technology using digital imaging and sensing combined with a differential vacuum technique to assess seal integrity of food packages on a high-speed production line. The cost of leaky packages in Australian food industries is estimated close to AUD $35 Million per year. Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large sums of money due to product recalls, compensation claims and loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and micro-organisms to enter the package. Flexible plastic packages are widely used, and are the least expensive form of retaining the quality of the product. These packets can be used to seal, and therefore maximise, the shelf life of both dry and moist products. The seals of food packages need to be airtight so that the food content is not contaminated due to contact with microorganisms that enter as a result of air leakage. Airtight seals also extend the shelf life of packaged foods, and manufacturers attempt to prevent food products with leaky seals being sold to consumers. There are many current NDT (non-destructive testing) methods of testing the seal of flexible packages best suited to random sampling, and for laboratory purposes. The three most commonly used methods are vacuum/pressure decay, bubble test, and helium leak detection. Although these methods can detect very fine leaks, they are limited by their high processing time and are not viable in a production line. Two nondestructive in-line packaging inspection machines are currently available and are discussed in the literature review. The detailed design and development of the High-Speed Sensing and Detection System (HSDS) is the fundamental requirement of this project and the future prototype and production unit. Successful laboratory testing was completed and a methodical design procedure was needed for a successful concept. The Mechanical tests confirmed the vacuum hypothesis and seal integrity with good consistent results. Electrically, the testing also provided solid results to enable the researcher to move the project forward with a certain amount of confidence. The laboratory design testing allowed the researcher to confirm theoretical assumptions before moving into the detailed design phase. Discussion on the development of the alternative concepts in both mechanical and electrical disciplines enables the researcher to make an informed decision. Each major mechanical and electrical component is detailed through the research and design process. The design procedure methodically works through the various major functions both from a mechanical and electrical perspective. It opens up alternative ideas for the major components that although are sometimes not practical in this application, show that the researcher has exhausted all engineering and functionality thoughts. Further concepts were then designed and developed for the entire HSDS unit based on previous practice and theory. In the future, it would be envisaged that both the Prototype and Production version of the HSDS would utilise standard industry available components, manufactured and distributed locally. Future research and testing of the prototype unit could result in a successful trial unit being incorporated in a working food processing production environment. Recommendations and future works are discussed, along with options in other food processing and packaging disciplines, and other areas in the non-food processing industry.