77 resultados para Automatic Data Processing.
Resumo:
Structural Health Monitoring (SHM) is defined as the use of on-structure sensing system to monitor the performance of the structure and evaluate its health state. Recent bridge failures, such as the collapses of the 1-35W Highway Bridge in USA, the collapse of the Can Tho Bridge in Vietnam and the Xijiang River Bridge in the Mainland China, all of which happened in the year 2007, have alerted the importance of structural health monitoring. This book presents a background of SHM technologies together with its latest development and successful applications. It is a book launched to celebrate the establishment of the Australian Network of Structural Health Monitoring (ANSHM). The network comprising leading SHM experts in Australia promotes and advances SHM research, application, education and development in Australia.
Resumo:
This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.
Resumo:
Eigen-based techniques and other monolithic approaches to face recognition have long been a cornerstone in the face recognition community due to the high dimensionality of face images. Eigen-face techniques provide minimal reconstruction error and limit high-frequency content while linear discriminant-based techniques (fisher-faces) allow the construction of subspaces which preserve discriminatory information. This paper presents a frequency decomposition approach for improved face recognition performance utilising three well-known techniques: Wavelets; Gabor / Log-Gabor; and the Discrete Cosine Transform. Experimentation illustrates that frequency domain partitioning prior to dimensionality reduction increases the information available for classification and greatly increases face recognition performance for both eigen-face and fisher-face approaches.
Resumo:
Virtual methods to assess the fitting of a fracture fixation plate were proposed recently, however with limitations such as simplified fit criteria or manual data processing. This study aims to automate a fit analysis procedure using clinical-based criteria, and then to analyse the results further for borderline fit cases. Three dimensional (3D) models of 45 bones and of a precontoured distal tibial plate were utilized to assess the fitting of the plate automatically. A Matlab program was developed to automatically measure the shortest distance between the bone and the plate at three regions of interest and a plate-bone angle. The measured values including the fit assessment results were recorded in a spreadsheet as part of the batch-process routine. An automated fit analysis procedure will enable the processing of larger bone datasets in a significantly shorter time, which will provide more representative data of the target population for plate shape design and validation. As a result, better fitting plates can be manufactured and made available to surgeons, thereby reducing the risk and cost associated with complications or corrective procedures. This in turn, is expected to translate into improving patients' quality of life.
Resumo:
The growing importance and need of data processing for information extraction is vital for Web databases. Due to the sheer size and volume of databases, retrieval of relevant information as needed by users has become a cumbersome process. Information seekers are faced by information overloading - too many result sets are returned for their queries. Moreover, too few or no results are returned if a specific query is asked. This paper proposes a ranking algorithm that gives higher preference to a user’s current search and also utilizes profile information in order to obtain the relevant results for a user’s query.
Resumo:
This paper investigates relationship between traffic conditions and the crash occurrence likelihood (COL) using the I-880 data. To remedy the data limitations and the methodological shortcomings suffered by previous studies, a multiresolution data processing method is proposed and implemented, upon which binary logistic models were developed. The major findings of this paper are: 1) traffic conditions have significant impacts on COL at the study site; Specifically, COL in a congested (transitioning) traffic flow is about 6 (1.6) times of that in a free flow condition; 2)Speed variance alone is not sufficient to capture traffic dynamics’ impact on COL; a traffic chaos indicator that integrates speed, speed variance, and flow is proposed and shows a promising performance; 3) Models based on aggregated data shall be interpreted with caution. Generally, conclusions obtained from such models shall not be generalized to individual vehicles (drivers) without further evidences using high-resolution data and it is dubious to either claim or disclaim speed kills based on aggregated data.
Resumo:
Urban renewal is a significant issue in developed urban areas, with a particular problem for urban planners being redevelopment of land to meet demand whilst ensuring compatibility with existing land use. This paper presents a geographic information systems (GIS)-based decision support tool (called LUDS) to quantitatively assess land-use suitability for site redevelopment in urban renewal areas. This consists of a model for the suitability analysis and an affiliated land-information database for residential, commercial, industrial, G/I/C (government/institution/community) and open space land uses. Development has occurred with support from interviews with industry experts, focus group meetings and an experimental trial, combined with several advanced techniques and tools, including GIS data processing and spatial analysis, multi-criterion analysis, as well as the AHP method for constructing the model and database. As demonstrated in the trial, LUDS assists planners in making land-use decisions and supports the planning process in assessing urban land-use suitability for site redevelopment. Moreover, it facilitates public consultation (participatory planning) by providing stakeholders with an explicit understanding of planners' views.
Resumo:
This work experimentally examines the performance benefits of a regional CORS network to the GPS orbit and clock solutions for supporting real-time Precise Point Positioning (PPP). The regionally enhanced GPS precise orbit solutions are derived from a global evenly distributed CORS network added with a densely distributed network in Australia and New Zealand. A series of computational schemes for different network configurations are adopted in the GAMIT-GLOBK and PANDA data processing. The precise GPS orbit results show that the regionally enhanced solutions achieve the overall orbit improvements with respect to the solutions derived from the global network only. Additionally, the orbital differences over GPS satellite arcs that are visible by any of the five Australia-wide CORS stations show a higher percentage of overall improvements compared to the satellite arcs that are not visible from these stations. The regional GPS clock and Uncalibrated Phase Delay (UPD) products are derived using the PANDA real time processing module from Australian CORS networks of 35 and 79 stations respectively. Analysis of PANDA kinematic PPP and kinematic PPP-AR solutions show certain overall improvements in the positioning performance from a denser network configuration after solution convergence. However, the clock and UPD enhancement on kinematic PPP solutions is marginal. It is suggested that other factors, such as effects of ionosphere, incorrectly fixed ambiguities, may be the more dominating, deserving further research attentions.
Resumo:
Modernized GPS and GLONASS, together with new GNSS systems, BeiDou and Galileo, offer code and phase ranging signals in three or more carriers. Traditionally, dual-frequency code and/or phase GPS measurements are linearly combined to eliminate effects of ionosphere delays in various positioning and analysis. This typical treatment method has imitations in processing signals at three or more frequencies from more than one system and can be hardly adapted itself to cope with the booming of various receivers with a broad variety of singles. In this contribution, a generalized-positioning model that the navigation system independent and the carrier number unrelated is promoted, which is suitable for both single- and multi-sites data processing. For the synchronization of different signals, uncalibrated signal delays (USD) are more generally defined to compensate the signal specific offsets in code and phase signals respectively. In addition, the ionospheric delays are included in the parameterization with an elaborate consideration. Based on the analysis of the algebraic structures, this generalized-positioning model is further refined with a set of proper constrains to regularize the datum deficiency of the observation equation system. With this new model, uncalibrated signal delays (USD) and ionospheric delays are derived for both GPS and BeiDou with a large dada set. Numerical results demonstrate that, with a limited number of stations, the uncalibrated code delays (UCD) are determinate to a precision of about 0.1 ns for GPS and 0.4 ns for BeiDou signals, while the uncalibrated phase delays (UPD) for L1 and L2 are generated with 37 stations evenly distributed in China for GPS with a consistency of about 0.3 cycle. Extra experiments concerning the performance of this novel model in point positioning with mixed-frequencies of mixed-constellations is analyzed, in which the USD parameters are fixed with our generated values. The results are evaluated in terms of both positioning accuracy and convergence time.
Resumo:
In this paper, problems are described which are related to the ergonomic assessment of vehicle package design in vehicle systems engineering. The traditional approach, using questionnaire techniques for a subjective assessment of comfort related to package design, is compared to a biomechanical approach. An example is given for ingress design. The biomechanical approach is based upon objective postural data. The experimental setup for the study is described and methods used for the biomechanical analysis are explained. Because the biomechanic assessment requires not only a complex experimental setup but also time consuming data processing, a systematic reduction and preparation of biomechanic data for classification with an Artificial Neural Network significantly improves the economy of the biomechanical method.
Resumo:
Irradiance profile around the receiver tube (RT) of a parabolic trough collector (PTC) is a key effect of optical performance that affects the overall energy performance of the collector. Thermal performance evaluation of the RT relies on the appropriate determination of the irradiance profile. This article explains a technique in which empirical equations were developed to calculate the local irradiance as a function of angular location of the RT of a standard PTC using a vigorously verified Monte Carlo ray tracing model. A large range of test conditions including daily normal insolation, spectral selective coatings and glass envelop conditions were selected from the published data by Dudley et al. [1] for the job. The R2 values of the equations are excellent that vary in between 0.9857 and 0.9999. Therefore, these equations can be used confidently to produce realistic non-uniform boundary heat flux profile around the RT at normal incidence for conjugate heat transfer analyses of the collector. Required values in the equations are daily normal insolation, and the spectral selective properties of the collector components. Since the equations are polynomial functions, data processing software can be employed to calculate the flux profile very easily and quickly. The ultimate goal of this research is to make the concentrating solar power technology cost competitive with conventional energy technology facilitating its ongoing research.
Resumo:
Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.