70 resultados para Arsenic remediation
Resumo:
Scarcity of large parcels of land in well-serviced areas has motivated people to re-develop brownfield land. Most of brownfield land has high risk of contamination from wide range of industrial activities such as gas works, factories, railway land and waste tips. In addition, people who live in brownfield re-development areas may be exposed to health hazards. This paper discusses public perceptions on the brownfield sites and also the risk and mitigation strategy to promote brownfield re-development. Data is gathered from face to face survey of fifty respondents who work in Brisbane Central Business District (CBD) and interview with an expert on remediation of contaminated land. From this preliminary study, it is found that majority of the population are not aware of any brownfield sites near their residence and those who are aware showed very little concern on their proximity to the site. Further discussion on the paper based on a simple cross tabulation analysis. The main risk mitigation strategy of re-development of brownfield site is by updating the registration through Environmental Management Register (EMR) and Contaminated Land Register (CLR). In addition, insurance may offer to cover cost overruns on remediation cost.
Resumo:
Objective: To determine the frequency and nature of intern underperformance as documented on in-training assessment forms. Methods: A retrospective review of intern assessment forms from a 2 year period (2009–2010) was conducted at a tertiary referral hospital in Brisbane, Queensland. The frequency of interns assessed as ‘requiring substantial assistance’ and/or ‘requires further development’ on mid- or end-of-term assessment forms was determined. Forms were analysed by the clinical rotation, time of year and domain(s) of clinical practice in which underperformance was documented. Results: During 2009 and 2010 the overall documented incidence of intern underperformance was 2.4% (95% CI 1.5–3.9%). Clinical rotation in emergency medicine detected significantly more underperformance compared with other rotations (P < 0.01). Interns predominantly had difficulty with ‘clinical judgment and decision-making skills’, ‘time management skills’ and ‘teamwork and colleagues’ (62.5%, 55% and 32.5% of underperforming assessments, respectively). Time of the year did not affect frequency of underperformance. A proportion of 13.4% (95% CI 9.2–19.0%) of interns working at the institution over the study period received at least one assessment in which underperformance was documented. Seventy-six per cent of those interns who had underperformance identified by mid-term assessment successfully completed the term following remediation. Conclusion: The prevalence of underperformance among interns is low, although higher than previously suggested. Emergency medicine detects relatively more interns in difficulty than other rotations.
Resumo:
This PhD practice-led research inquiry sets out to examine and describe how the fluid interactions between memory and time can be rendered via the remediation of my painting and the construction of a digital image archive. My abstract digital art and handcrafted practice is informed by Deleuze and Guattari’s rhizomics of becoming. I aim to show that the technological mobility of my creative strategies produce new conditions of artistic possibility through the mobile principles of rhizomic interconnection, multiplicity and diversity. Subsequently through the ongoing modification of past painting I map how emergent forms and ideas open up new and incisive engagements with the experience of a ‘continual present’. The deployment of new media and cross media processes in my art also deterritorialises the modernist notion of painting as a static and two dimensional spatial object. Instead, it shows painting in a postmodern field of dynamic and transformative intermediality through digital formats of still and moving images that re-imagines the relationship between memory, time and creative practice.
Resumo:
This thesis offered a step forward in the development of cheap and effective materials for water treatment. It described the modification of naturally abundant clay minerals with organic molecules, and used the modified clays as effective adsorbents for the removal of recalcitrant organic water pollutants. The outcome of the study greatly extended our understanding of the synthesis and characteristic properties of clay and modified clay minerals, provided optimistic evaluation of the modified clays for environmental remediation and offered potential utility for clay minerals in the industry and environment.
Resumo:
Organo Arizona SAz-2 Ca-montmorillonite was prepared with different surfactant (DDTMA and HDTMA) loadings through direct ion exchange. The structural properties of the prepared organoclays were characterized by XRD and BET instruments. Batch experiments were carried out on the adsorption of bisphenol A (BPA) under different experimental conditions of pH and temperature to determine the optimum adsorption conditions. The hydrophobic phase and positively charged surface created by the loaded surfactant molecules are responsible for the adsorption of BPA. The adsorption of BPA onto organoclays is well described by pseudo-second order kinetic model and the Langmuir isotherm. The maximum adsorption capacity of the organoclays for BPA obtained from a Langmuir isotherm was 151.52 mg/g at 297 K. This value is among the highest values for BPA adsorption compared with other adsorbents. In addition, the adsorption process was spontaneous and exothermic based on the adsorption thermodynamics study. The organoclays intercalated with longer chain surfactant molecules possessed a greater adsorption capacity for BPA even under alkaline conditions. This process provides a pathway for the removal of BPA from contaminated waters.
Resumo:
A novel composite material based on deposition of nanosized zero-valent iron (nZVI) particles on acid-leached diatomite was synthesised for the removal of a chlorinated contaminant in water. The nZVI /diatomite composites were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. Compared with the pure nZVI particles, better dispersion of nZVI particles on the surface or inside the pores of diatom shells was observed. The herbicide simazine was selected as the model chlorinated contaminant and the removal efficiency by nZVI /diatomite composite was compared with that of the pristine nZVI and commercial iron powder. It was found that the diatomite supported nZVI composite material prepared by centrifugation exhibits relatively better efficient activity in decomposition of simazine than commercial Fe, lab synthesized nZVI and composite material prepared via rotary evaporation, and the optimum experimental conditions were obtained based on a series of batch experiments. This study on immobilizing nZVI particles onto diatomite opens a new avenue for the practical application of nZVI and the diatomite-supported nanosized zero-valent iron composite materials have potential applications in environmental remediation.
Resumo:
The occasional ArtsHub article asking spectators to show respect for stage by switching all devices off notwithstanding, in the last few years we have witnessed an clear push to make more use of social media as a means by which spectators might respond to a performance across most theatre companies. Mainstage companies, as well as contemporary companies are asking us to turn on, tune in and tweet our impressions of a show to them, to each other, and to the masses – sometimes during the show, sometimes after the show, and sometimes without having seen the show. In this paper, I investigate the relationship between theatre, spectatorship and social media, tracing the transition from print platforms in which expert critics were responsible for determining audience response to today’s online platforms in which everybody is responsible for debating responses. Is the tendency to invite spectators to comment via social media before, during, or after a show the advance in audience engagement, entertainment and empowerment many hail it to be? Is it a return to a more democratised past in which theatres were active, interactive and at times downright rowdy, and the word of the published critic had yet to take over from the word of the average punter? Is it delivering distinctive shifts in theatre and theatrical meaning making? Or is it simply a good way to get spectators to write about a work they are no longer watching? An advance in the marketing of the work rather than an advance in the active, interactive aesthetic of the work? In this paper, I consider what the performance of spectatorship on social media tells us about theatre, spectatorship and meaning-making. I use initial findings about the distinctive dramaturgies, conflicts and powerplays that characterise debates about performance and performance culture on social media to reflect on the potentially productive relationship between theatre, social media, spectatorship, and meaning making. I suggest that the distinctive patterns of engagement displayed on social media platforms – including, in many cases, remediation rather than translation, adaptation or transformation of prior engagement practices – have a lot to tell us about how spectators and spectator groups negotiate for the power to provide the dominant interpretation of a work.
Resumo:
Goethite, one of the most thermodynamically stable iron oxides, has been extensively researched especially the structure (including surface structure), the adsorption capacity to anions, organic/organic acid (especially for the soil organic carbon) and cations in the natural environment and its potential application in environmental protection. For example, the adsorption of heavy metals by goethite can decrease the concentration of heavy metals in aqueous solution and immobilize; the adsorption to soil organic carbon can decrease the release of carbon and fix carbon. In this present overview, the possible physicochemical properties of the goethite surface contributing to the strong affinity of goethite to nutrients and contaminants in natural environment are reported. Moreover, these chemicals adsorbed by goethite were also summarized and the suggested adsorption mechanism for these adsorbates was elucidated, which will help us understand the role of goethite in natural environment and provide some information about goethite as an absorbent. In addition, the feasibility of goethite used as catalyst carrier and the precursor of NZVI was proposed for removal of environmental pollution.
Resumo:
Sediment samples from 13 sampling sites in Deception Bay, Australia were analysed for the presence of heavy metals. Enrichment factors, modified contamination indices and Nemerow pollution indices were calculated for each sampling site to determine sediment quality. The results indicate significant pollution of most sites by lead (average enrichment factor (EF) of 13), but there is also enrichment of arsenic (average EF 2.3), zinc (average EF 2.7) and other heavy metals. The modified degree of contamination indices (average 1.0) suggests that there is little contamination. By contrast, the Nemerow pollution index (average 5.8) suggests that Deception Bay is heavily contaminated. Cluster analysis was undertaken to identify groups of elements. Strong correlation between some elements and two distinct clusters of sampling sites based on sediment type was evident. These results have implications for pollution in complex marine environments where there is significant influx of sand and sediment into an estuarine environment.
Resumo:
This investigation used a combination of techniques, such as X-ray diffraction, inductively coupled plasma optical emission spectroscopy and infrared spectroscopy, to determine the dissolution mechanisms of the Bayer precipitate and the associated rate of dissolution in acetic, citric and oxalic acid environments. The Bayer precipitate is a mixture of hydrotalcite, calcium carbonate and sodium chloride that forms during the seawater neutralisation of Bayer liquors (waste residue of the alumina industry). The dissolution rate of a Bayer precipitate is found to be dependent on (1) the strength of the organic acid and (2) the number of donating H+ ions. The dissolution mechanism for a Bayer precipitate consists of several steps involving: (1) the dissolution of CaCO3, (2) formation of whewellite (calcium oxalate) when oxalic acid is used and (3) multiple dissolution steps for hydrotalcite that are highly dependent on the pH of solution. The decomposition of the Al–OH hydrotalcite layers resulted in the immediate formation of Al(OH)3, which is stable until the pH decreases below 5.5. This investigation has found that the Bayer precipitate is stable across a wide pH range in the presence of common organic acids found in the rhizosphere, and that initial decomposition steps are likely to be beneficial in supporting plant growth through the release of nutrients such as Ca2þ and Mg2þ.
Resumo:
Organic surfactants modified clay minerals are usually used as adsorbents for hydrophobic organic contaminants remediation; this work however has shown organoclays can also work as adsorbents for hydrophilic anionic contaminant immobilization. Organoclays were prepared based on halloysite, kaolinite and bentonite and used for nitrate adsorption, which are significant for providing mechanism for the adsorption of anionic contaminants from waste water. XRD was used to characterize unmodified and surfactants modified clay minerals. Thermogravimetric analysis (TG) was used to determine the thermal stability and actual loading of surfactant molecules. Ion chromatography (IC) was used to determine changes of nitrate concentration before and after adsorption by these organoclays. These organoclays showed different removal capacities for anionic ions from water and adsorption mechanism was investigated.
Resumo:
Among the clay minerals, montmorillonite is the most extensively studied material using as adsorbents, but palygorskite and its organically modified products have been least explored for their potential use in contaminated water remediation. In this study, an Australian palygorskite was modified with cationic surfactants octadecyl trimethylammonium bromide and dioctadecyl dimethylammonium bromide at different doses. A full structural characterization of prepared organo-palygorskite by X-ray diffraction, infrared spectroscopy, surface analysis and thermogravimetric analysis was performed. The morphological changes of palygorskite before and after modification were recorded using scanning electron microscopy, which showed the surfactant molecules can attach on the surface of rod-like crystals and thus can weaken the interactions between palygorskite single crystals. Real surfactants loadings on organo-palygorskites were also calculated based on thermogravimetric analysis. 1 CEC, 2 CEC octadecyl trimethylammonium bromide modified palygorskites, 1 CEC and 2 CEC dioctadecyl dimethylammonium bromide modified palygorskites absorbed as much as 12 mg/g, 42 mg/g, 9 mg/g and 25 mg/g of 2,4- dichlorophenoxyacetic acid respectively. This study has shown a potential on organo-palygorskites for organic herbicide adsorption especially anionic ones from waste water. In addition, equilibration time effects and the Langmuir and Freundlich models fitting were also investigated in details.
Resumo:
Interactions of mercury(II) with the microtubule network of cells may lead to genotoxicity. Complexation of mercury(II) with EDTA is currently being discussed for its employment in detoxification processes of polluted sites. This prompted us to re-evaluate the effects of such complexing agents on certain aspects of mercury toxicity, by examining the influences of mercury(II) complexes on tubulin assembly and kinesin-driven motility of microtubules. The genotoxic effects were studied using the micronucleus assay in V79 Chinese hamster fibroblasts. Mercury(II) complexes with EDTA and related chelators interfered dose-dependently with tubulin assembly and microtubule motility in vitro. The no-effect-concentration for assembly inhibition was 1 μM of complexed Hg(II), and for inhibition of motility it was 0.05 μM, respectively. These findings are supported on the genotoxicity level by the results of the micronucleus assay, with micronuclei being induced dose-dependently starting at concentrations of about 0.05 μM of complexed Hg(II). Generally, the no-effect-concentrations for complexed mercury(II) found in the cell-free systems and in cellular assays (including the micronucleus test) were identical with or similar to results for mercury tested in the absence of chelators. This indicates that mercury(II) has a much higher affinity to sulfhydryls of cytoskeletal proteins than to this type of complexing agents. Therefore, the suitability of EDTA and related compounds for remediation of environmental mercury contamination or for other detoxification purposes involving mercury has to be questioned.
Resumo:
Successful prediction of groundwater flow and solute transport through highly heterogeneous aquifers has remained elusive due to the limitations of methods to characterize hydraulic conductivity (K) and generate realistic stochastic fields from such data. As a result, many studies have suggested that the classical advective-dispersive equation (ADE) cannot reproduce such transport behavior. Here we demonstrate that when high-resolution K data are used with a fractal stochastic method that produces K fields with adequate connectivity, the classical ADE can accurately predict solute transport at the macrodispersion experiment site in Mississippi. This development provides great promise to accurately predict contaminant plume migration, design more effective remediation schemes, and reduce environmental risks. Key Points Non-Gaussian transport behavior at the MADE site is unraveledADE can reproduce tracer transport in heterogeneous aquifers with no calibrationNew fractal method generates heterogeneous K fields with adequate connectivity
Resumo:
One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.