145 resultados para Ankle joint
Resumo:
Background and purpose: The appropriate fixation method for hemiarthroplasty of the hip as it relates to implant survivorship and patient mortality is a matter of ongoing debate. We examined the influence of fixation method on revision rate and mortality.----- ----- Methods: We analyzed approximately 25,000 hemiarthroplasty cases from the AOA National Joint Replacement Registry. Deaths at 1 day, 1 week, 1 month, and 1 year were compared for all patients and among subgroups based on implant type.----- ----- Results: Patients treated with cemented monoblock hemiarthroplasty had a 1.7-times higher day-1 mortality compared to uncemented monoblock components (p < 0.001). This finding was reversed by 1 week, 1 month, and 1 year after surgery (p < 0.001). Modular hemiarthroplasties did not reveal a difference in mortality between fixation methods at any time point.----- ----- Interpretation: This study shows lower (or similar) overall mortality with cemented hemiarthroplasty of the hip.
Elasto-plastic stress analysis of an insulated rail joint (IRJ) with a loading below shakedown limit
Resumo:
A finite element numerical simulation is carried out to examine stress distributions on railhead in the vicinity of the endpost of a insulated rail joint. The contact patch and pressure distribution are considered using modified Hertzian formulation. A combined elasto-plastic material modelling available in Abaqus is employed in the simulation. A dynamic load factor of 1.21 is considered in modelling for the wheel load based on a previous study as part of this on going research. Shakedown theorem is employed in this study. A peak pressure load which is above the shakedown limit is determined as input load. As a result, a progressive damage in the railhead has been captured as depicted in the equivalent plastic strain plot.
Resumo:
Problem Despite widespread acceptance of the Ottawa ankle rules for assessment of acute ankle injuries, their application varies considerably. Design Before and after study. Background and setting Emergency departments of a tertiary teaching hospital and a community hospital in Australia. Key measures for improvement Documentation of the Ottawa ankle rules, proportion of patients referred for radiography, proportion of radiographs showing a fracture. Strategies for change Education, a problem specific radiography request form, reminders, audit and feedback, and using radiographers as “gatekeepers.” Effects of change Documentation of the Ottawa ankle rules improved from 57.5% to 94.7% at the tertiary hospital, and 51.6% to 80.8% at the community hospital (P<0.001 for both). The proportion of patients undergoing radiography fell from 95.8% to 87.2% at the tertiary hospital, and from 91.4% to 78.9% at the community hospital (P<0.001 for both). The proportion of radiographs showing a fracture increased from 20.4% to 27.1% at the tertiary hospital (P=0.069), and 15.2% to 27.2% (P=0.002) at the community hospital. The missed fracture rate increased from 0% to 2.9% at the tertiary hospital and from 0% to 1.6% at the community hospital compared with baseline (P=0.783 and P=0.747). Lessons learnt Assessment of case note documentation has limitations. Clinician groups seem to differ in their capacity and willingness to change their practice. A multifaceted change strategy including a problem specific radiography request form can improve the selection of patients for radiography.
Resumo:
Strengthening of steel structures using externally-bonded carbon fibre reinforced polymers ‘CFRP’ is a rapidly developing technique. This paper describes the behaviour of axially loaded flat steel plates strengthened using carbon fibre reinforced polymer sheets. Two steel plates were joined together with adhesive and followed by the application of carbon fibre sheet double strap joint with different bond lengths. The behaviour of the specimens was further investigated by using nonlinear finite element analysis to predict the failure modes and load capacity. In this study, bond failure is the dominant failure mode for normal modulus (240 GPa) CFRP bonding which closely matched the results of finite elements. The predicted ultimate loads from the FE analysis are found to be in good agreement with experimental values.
Resumo:
Phospholipid (PL) molecules form the main structure of the membrane that prevents the direct contact of opposing articular cartilage layers. In this paper we conceptualise articular cartilage as a giant reverse micelle (GRM) in which the highly hydrated three-dimensional network of phospholipids is electrically charged and able to resist compressive forces during joint movement, and hence loading. Using this hypothetical base, we describe a hydrophilic-hydrophilic (HL-HL) biopair model of joint lubrication by contacting cartilages, whose mechanism is reliant on lamellar cushioning. To demonstrate the viability of our concept, the electrokinetic properties of the membranous layer on the articular surface were determined by measuring via microelectrophoresis, the adsorption of ions H, OH, Na and Cl on phospholipid membrane of liposomes, leading to the calculation of the effective surface charge density. The surface charge density was found to be -0.08 ± 0.002 cm-2 (mean ± S.D.) for phospholipid membranes, in 0.155 M NaCl solution and physiological pH. This value was approximately five times less than that measured in 0.01 M NaCl. The addition of synovial fluid (SF) to the 0.155 M NaCl solution reduced the surface charge density by 30% which was attributed to the binding of synovial fluid macromolecules to the phospholipid membrane. Our experiments show that particles charge and interact strongly with the polar core of RM. We demonstrate that particles can have strong electrostatic interactions when ions and macromolecules are solubilized by reverse micelle (RM). Since ions are solubilized by reverse micelle, the surface entropy influences the change in the charge density of the phospholipid membrane on cartilage surfaces. Reverse micelles stabilize ions maintaining equilibrium, their surface charges contribute to the stability of particles, while providing additional screening for electrostatic processes. © 2008 Elsevier Ireland Ltd. All rights reserved.