176 resultados para Angular acceleration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUVs) are increasingly used, both in military and civilian applications. These vehicles are limited mainly by the intelligence we give them and the life of their batteries. Research is active to extend vehicle autonomy in both aspects. Our intent is to give the vehicle the ability to adapt its behavior under different mission scenarios (emergency maneuvers versus long duration monitoring). This involves a search for optimal trajectories minimizing time, energy or a combination of both. Despite some success stories in AUV control, optimal control is still a very underdeveloped area. Adaptive control research has contributed to cost minimization problems, but vehicle design has been the driving force for advancement in optimal control research. We look to advance the development of optimal control theory by expanding the motions along which AUVs travel. Traditionally, AUVs have taken the role of performing the long data gathering mission in the open ocean with little to no interaction with their surroundings, MacIver et al. (2004). The AUV is used to find the shipwreck, and the remotely operated vehicle (ROV) handles the exploration up close. AUV mission profiles of this sort are best suited through the use of a torpedo shaped AUV, Bertram and Alvarez (2006), since straight lines and minimal (0 deg - 30 deg) angular displacements are all that are necessary to perform the transects and grid lines for these applications. However, the torpedo shape AUV lacks the ability to perform low-speed maneuvers in cluttered environments, such as autonomous exploration close to the seabed and around obstacles, MacIver et al. (2004). Thus, we consider an agile vehicle capable of movement in six degrees of freedom without any preference of direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a method of recovering the 6 DoF pose (Cartesian position and angular rotation) of a range sensor mounted on a mobile platform. The method utilises point targets in a local scene and optimises over the error between their absolute position and their apparent position as observed by the range sensor. The analysis includes an investigation into the sensitivity and robustness of the method. Practical results were collected using a SICK LRS2100 mounted on a P&H electric mining shovel and present the errors in scan data relative to an independent 3D scan of the scene. A comparison to directly measuring the sensor pose is presented and shows the significant accuracy improvements in scene reconstruction using this pose estimation method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eco-driving is an initiative driving behavior which aims to reduce fuel consumption and emissions from automobiles. Recently, it has attracted increasing interests and has been adopted by many drivers in Australia. Although many of the studies have revealed considerable benefits in terms of fuel consumption and emissions after utilising eco-driving, most of the literature investigated eco-driving effects on individual driver but not traffic flow. The driving behavior of eco-drivers will potentially affect other drivers and thereby affects the entire traffic flow. To comprehensively assess and understand how effectively eco-driving can perform, therefore, measurement on traffic flow is necessary. In this paper, we proposed and demonstrated an evaluation method based on a microscopic traffic simulator (Aimsun). We focus on one particular eco-driving style which involves moderate and smooth acceleration. We evaluated both traffic performance (travel time) and environmental performance (fuel consumption and CO2 emission) at traffic intersection level in a simple simulation model. The before-and-after comparisons indicated potentially negative impacts when using eco-driving, which highlighted the necessity to carefully evaluate and improve eco-driving before wide promotion and implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a method for the recovery of position and absolute attitude (including pitch, roll and yaw) using a novel fusion of monocular Visual Odometry and GPS measurements in a similar manner to a classic loosely-coupled GPS/INS error state navigation filter. The proposed filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. An observability analysis of the proposed filter is performed, showing that the scale factor, position and attitude errors are fully observable under acceleration that is non-parallel to velocity vector in the navigation frame. The observability properties of the proposed filter are demonstrated using numerical simulations. We conclude the article with an implementation of the proposed filter using real flight data collected from a Cessna 172 equipped with a downwards-looking camera and GPS, showing the feasibility of the algorithm in real-world conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 20 years have passed now since the NTSB issued its original recommendation to expedite development, certification and production of low-cost proximity warning and conflict detection systems for general aviation [1]. While some systems are in place (TCAS [2]), ¡¨see-and-avoid¡¨ remains the primary means of separation between light aircrafts sharing the national airspace. The requirement for a collision avoidance or sense-and-avoid capability onboard unmanned aircraft has been identified by leading government, industry and regulatory bodies as one of the most significant challenges facing the routine operation of unmanned aerial systems (UAS) in the national airspace system (NAS) [3, 4]. In this thesis, we propose and develop a novel image-based collision avoidance system to detect and avoid an upcoming conflict scenario (with an intruder) without first estimating or filtering range. The proposed collision avoidance system (CAS) uses relative bearing ƒÛ and angular-area subtended ƒê , estimated from an image, to form a test statistic AS C . This test statistic is used in a thresholding technique to decide if a conflict scenario is imminent. If deemed necessary, the system will command the aircraft to perform a manoeuvre based on ƒÛ and constrained by the CAS sensor field-of-view. Through the use of a simulation environment where the UAS is mathematically modelled and a flight controller developed, we show that using Monte Carlo simulations a probability of a Mid Air Collision (MAC) MAC RR or a Near Mid Air Collision (NMAC) RiskRatio can be estimated. We also show the performance gain this system has over a simplified version (bearings-only ƒÛ ). This performance gain is demonstrated in the form of a standard operating characteristic curve. Finally, it is shown that the proposed CAS performs at a level comparable to current manned aviations equivalent level of safety (ELOS) expectations for Class E airspace. In some cases, the CAS may be oversensitive in manoeuvring the owncraft when not necessary, but this constitutes a more conservative and therefore safer, flying procedures in most instances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilising a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that, while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100ºC and 250ºC, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilisation began at around 40°C with the majority occurring by 80°C. Particles produced during hard acceleration from rest exhibited lower volatility than that produced during other times of the cycle. Based on our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these non-volatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100ºC removed ultrafine particle numbers by 69% to 82% when a nucleation mode was present and just 18% when it was not.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fiber Bragg grating (FBG) sensor technology has been attracting substantial industrial interests for the last decade. FBG sensors have seen increasing acceptance and widespread use for structural sensing and health monitoring applications in composites, civil engineering, aerospace, marine, oil & gas, and smart structures. One transportation system that has been benefitted tremendously from this technology is railways, where it is of the utmost importance to understand the structural and operating conditions of rails as well as that of freight and passenger service cars to ensure safe and reliable operation. Fiberoptic sensors, mostly in the form of FBGs, offer various important characteristics, such as EMI/RFI immunity, multiplexing capability, and very long-range interrogation (up to 230 km between FBGs and measurement unit), over the conventional electrical sensors for the distinctive operational conditions in railways. FBG sensors are unique from other types of fiber-optic sensors as the measured information is wavelength-encoded, which provides self-referencing and renders their signals less susceptible to intensity fluctuations. In addition, FBGs are reflective sensors that can be interrogated from either end, providing redundancy to FBG sensing networks. These two unique features are particularly important for the railway industry where safe and reliable operations are the major concerns. Furthermore, FBGs are very versatile and transducers based on FBGs can be designed to measure a wide range of parameters such as acceleration and inclination. Consequently, a single interrogator can deal with a large number of FBG sensors to measure a multitude of parameters at different locations that spans over a large area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the international community struggles to find a cost-effective solution to mitigate climate change and reduce greenhouse gas emissions, carbon capture and storage (CCS) has emerged as a project mechanism with the potential to assist in transitioning society towards its low carbon future. Being a politically attractive option, legal regimes to promote and approve CCS have proceeded at an accelerated pace in multiple jurisdictions including the European Union and Australia. This acceleration and emphasis on the swift commercial deployment of CCS projects has left the legal community in the undesirable position of having to advise on the strengths and weaknesses of the key features of these regimes once they have been passed and become operational. This is an area where environmental law principles are tested to their very limit. On the one hand, implementation of this new technology should proceed in a precautionary manner to avoid adverse impacts on the atmosphere, local community and broader environment. On the other hand, excessive regulatory restrictions will stifle innovation and act as a barrier to the swift deployment of CCS projects around the world. Finding the balance between precaution and innovation is no easy feat. This is an area where lawyers, academics, regulators and industry representatives can benefit from the sharing of collective experiences, both positive and negative, across the jurisdictions. This exemplary book appears to have been collated with this philosophy in mind and provides an insightful addition to the global dialogue on establishing effective national and international regimes for the implementation of CCS projects...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Battery powered bed movers are becoming increasingly common within the hospital setting. The use of powered bed movers is believed to result in reduced physical efforts required by health care workers, which may be associated with a decreased risk of occupation related injuries. However, little work has been conducted assessing how powered bed movers impact on levels of physiological strain and muscle activation for the user. The muscular efforts associated with moving hospital beds using three different methods; manual pushing, StaminaLift Bed Mover (SBM) and Gzunda Bed Mover (GBM)were measured on six male subjects. Fourteen muscles were assessed moving a weighted hospital bed along a standardized route in an Australian hospital environment. Trunk inclination and upper spine acceleration were also quantified. Powered bed movers exhibited significantly lower muscle activation levels than manual pushing for the majority of muscles. When using the SBM, users adopted a more upright posture which was maintained while performing different tasks (e.g. turning a corner, entering a lift), while trunk inclination varied considerably for manual pushing and the GBM. The reduction in lower back muscular activation levels and the load reducing effect of a more upright posture may result in lower incidence of lower back injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1999 Richards compared the accuracy of commercially available motion capture systems commonly used in biomechanics. Richards identified that in static tests the optical motion capture systems generally produced RMS errors of less than 1.0 mm. During dynamic tests, the RMS error increased to up to 4.2 mm in some systems. In the last 12 years motion capture systems have continued to evolve and now include high-resolution CCD or CMOS image sensors, wireless communication, and high full frame sampling frequencies. In addition to hardware advances, there have also been a number of advances in software, which includes improved calibration and tracking algorithms, real time data streaming, and the introduction of the c3d standard. These advances have allowed the system manufactures to maintain a high retail price in the name of advancement. In areas such as gait analysis and ergonomics many of the advanced features such as high resolution image sensors and high sampling frequencies are not required due to the nature of the task often investigated. Recently Natural Point introduced low cost cameras, which on face value appear to be suitable as at very least a high quality teaching tool in biomechanics and possibly even a research tool when coupled with the correct calibration and tracking software. The aim of the study was therefore to compare both the linear accuracy and quality of angular kinematics from a typical high end motion capture system and a low cost system during a simple task.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibration analysis has been a prime tool in condition monitoring of rotating machines, however, its application to internal combustion engines remains a challenge because engine vibration signatures are highly non-stationary that are not suitable for popular spectrum-based analysis. Signal-to-noise ratio is a main concern in engine signature analysis due to severe background noise being generated by consecutive mechanical events, such as combustion, valve opening and closing, especially in multi-cylinder engines. Acoustic Emission (AE) has been found to give excellent signal-to-noise ratio allowing discrimination of fine detail of normal or abnormal events during a given cycle. AE has been used to detect faults, such as exhaust valve leakage, fuel injection behaviour, and aspects of the combustion process. This paper presents a review of AE application to diesel engine monitoring and preliminary investigation of AE signature measured on an 18-cylinder diesel engine. AE is compared with vibration acceleration for varying operating conditions: load and speed. Frequency characteristics of AE from those events are analysed in time-frequency domain via short time Fourier trasform. The result shows a great potential of AE analysis for detection of various defects in diesel engines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a mathematical model of the evaporation of colloidal sol droplets suspended within an atmosphere consisting of water vapour and air. The main purpose of this work is to investigate the causes of the morphologies arising within the powder collected from a spray dryer into which the precursor sol for Synroc™ is sprayed. The morphology is of significant importance for the application to storage of High Level Liquid Nuclear Waste. We begin by developing a model describing the evaporation of pure liquid droplets in order to establish a framework. This model is developed through the use of continuum mechanics and thermodynamic theory, and we focus on the specific case of pure water droplets. We establish a model considering a pure water vapour atmosphere, and then expand this model to account for the presence of an atmospheric gas such as air. We model colloidal particle-particle interactions and interactions between colloid and electrolyte using DLVO Theory and reaction kinetics, then incorporate these interactions into an expression for net interaction energy of a single particle with all other particles within the droplet. We account for the flow of material due to diffusion, advection, and interaction between species, and expand the pure liquid droplet models to account for the presence of these species. In addition, the process of colloidal agglomeration is modelled. To obtain solutions for our models, we develop a numerical algorithm based on the Control Volume method. To promote numerical stability, we formulate a new method of convergence acceleration. The results of a MATLAB™ code developed from this algorithm are compared with experimental data collected for the purposes of validation, and further analysis is done on the sensitivity of the solution to various controlling parameters.