112 resultados para Agriculture, Cooperative
Resumo:
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.
Resumo:
There are a variety of reasons and motivations for people to subscribe to community-supported agriculture (CSA) schemes, many of which include social, ethical, environmental, and economical benefits. The global rise of food allergies and food related health issues in recent years has led to a growing number of initiatives particularly in developing countries to raise more awareness of the current situation amongst individuals, organisations, and government bodies, and to plan for its implications for the existing food and health systems. Based on a mixed method research conducted in Australia, this paper argues that personal health matters are one of the key motivators for consumers to seek out alternative food systems, particularly CSA initiatives. In addition, it presents the willingness for consumers to seek out information about the food they consume and proposes that technology plays a key role in being used as a conduit to share and investigate information relating to alternative food systems. Further research is required to determine the variety of benefits and opportunities alternative food systems can provide consumers with food related health issues.
Resumo:
This paper presents a feasible 3D collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.
Resumo:
The 2010 LAGI competition was held on three underutilized sites in the United Arab Emirates. By choosing Staten Island, New York in 2012 the competition organises have again brought into question new roles for public open space in the contemporary city. In the case of the UEA sites, the competition produced many entries which aimed to create a sculpture and by doing so, they attracted people to the selected empty spaces in an arid climate. In a way these proposals were the incubators and the new characters of these empty spaces. The competition was thus successful at advancing understandings of the expanded role of public open spaces in EAU and elsewhere. LAGI 2012 differs significantly to the UAE program because Fresh Kills Park has already been planned as a public open space for New Yorkers - with or without these clean energy sculptures. Furthermore, Fresh Kills Park is already an (gas) energy generating site in its own right. We believe Fresh Kills Park, as a site, presents a problem which somewhat transcends the aims of the competition brief. Advancing a sustainable urban design proposition for the site therefore requires a fundamental reconsideration of the established paradigms public open space. Hence our strategy is to not only create an energy generating, site specific art work, but to create synergy between the public and the site engagement while at the same time complement the idiosyncrasies of the pre-existing engineered landscape. Current PhD research about energy generation in public open spaces informs this work.
Resumo:
A sub optimal resource allocation algorithm for Orthogonal Frequency Division Multiplexing (OFDM) based cooperative scheme is proposed. The system consists of multiple relays. Subcarrier space is divided into blocks and relays participating in cooperation are allocated specific blocks to be used with a user. To ensure unique subcarrier assignment system is constrained such that same block cannot be used by more than one user. Users are given fair block assignments while no restriction for maximum number of blocks a relay can employ is given. Forced cost based decisions [1] are used for block allocation. Simulation results show that this scheme outperforms a non cooperating scheme with sequential allocation with respect to power usage.
Resumo:
We consider a joint relay selection and subcarrier allocation problem that minimizes the total system power for a multi-user, multi-relay and single source cooperative OFDM based two hop system. The system is constrained to all users having a specific subcarrier requirement (user fairness). However no specific fairness constraints for relays are considered. To ensure the optimum power allocation, the subcarriers in two hops are paired with each other. We obtain an optimal subcarrier allocation for the single user case using a similar method to what is described in [1] and modify the algorithm for multiuser scenario. Although the optimality is not achieved in multiuser case the probability of all users being served fairly is improved significantly with a relatively low cost trade off.
Resumo:
Background: Periurban agriculture refers to agricultural practice occurring in areas with mixed rural and urban features. It is responsible 25% of the total gross value of economic production in Australia, despite only comprising 3% of the land used for agriculture. As populations grows and cities expand, they are constantly absorbing surrounding fringe areas, thus creating a new fringe, further from the city causing the periurban region to constantly shift outwards. Periurban regions are fundamental in the provision of fresh food to city populations and residential (and industrial) expansion taking over agricultural land has been noted as a major worldwide concern. Another major concern around the increase in urbanisation and resultant decrease in periurban agriculture is its potential effect on food security. Food security is the availability or access to nutritionally-adequate, culturally-relevant and safe foods in culturally-appropriate ways. Thus food insecurity occurs when access to or availability of these foods is compromised. There is an important level of connectedness between food security and food production and a decrease in periurban agriculture may have adverse effects on food security. A decrease in local, seasonal produce may result in a decrease in the availability of products and an increase in cost, as food must travel greater distances, incurring extra costs present at the consumer level. Currently, few Australian studies exist examining the change in periurban agriculture over time. Such information may prove useful for future health policy and interventions as well as infrastructure planning. The aim of this study is to investigate changes in periurban agriculture among capital cities of Australia. Methods: We compared data pertaining to selected commodities from the Australian Bureau of Statistics 2000-01 and 2005 -2006 Agricultural Census. This survey is distributed online or via mail on a five-yearly basis to approximately 175,000 Agricultural business to ascertain information on a range of factors, such as types of crops, livestock and land preparation practices. For the purpose of this study we compared the land being used for total crops, and cereal , oil seed, legume, fruit and vegetable crops separately. Data was analysed using repeated measures anova in spss. Results: Overall, total area available for crops in urbanised areas of Australia increased slightly by 1.8%. However, Sydney, Melbourne, Adelaide and Perth experienced decreases in the area available for fruit crops by 11%, 5%,and 4% respectively. Furthermore, Brisbane and Perth experienced decreases in land available for vegetable crops by 28% and 14% respectively. Finally, Sydney, Adelaide and Perth experienced decreases in land available for cereal crops by 10 – 79%. Conclusions: These findings suggest that population increases and consequent urban sprawl may be resulting in a decrease in peri-urban agriculture, specifically for several core food groups including fruit, breads and grain based foods. In doing so, access to or availability of these foods may be limited, and the cost of these foods is likely to increase, which may compromise food insecurity for certain sub-groups of the population.
Resumo:
Although the multiple economic, environmental and social challenges threatening the viability of rural and regional communities in Australia are well-known, little research has explored how community leaders conceptualise the impact and opportunities associated with economic diversification from agriculture into alternative industries, such as tourism and mining. This qualitative research, utilising the Darling Downs in Queensland as a case study, documents how 28 local community leaders have experienced this economic diversification process. The findings reveal that local community leaders have a deep understanding about the opportunities and challenges presented by diversification, articulating a clear vision about how to achieve the best possible future for their region. Despite excitement about growth, there were concerns about preserving heritage, the increased pressure on local infrastructure and an ageing population. By documenting local leader’s insights, these findings may help inform planning for rural and regional communities and facilitate management of the exciting yet challenging process of growth and diversification
Resumo:
This paper presents an input-orientated data envelopment analysis (DEA) framework which allows the measurement and decomposition of economic, environmental and ecological efficiency levels in agricultural production across different countries. Economic, environmental and ecological optimisations search for optimal input combinations that minimise total costs, total amount of nutrients, and total amount of cumulative exergy contained in inputs respectively. The application of the framework to an agricultural dataset of 30 OECD countries revealed that (i) there was significant scope to make their agricultural production systemsmore environmentally and ecologically sustainable; (ii) the improvement in the environmental and ecological sustainability could be achieved by being more technically efficient and, even more significantly, by changing the input combinations; (iii) the rankings of sustainability varied significantly across OECD countries within frontier-based environmental and ecological efficiency measures and between frontier-based measures and indicators.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Vehicles are able to communicate on the local traffic state in real time, which could result in an automatic and therefore better reaction to the mechanism of traffic jam formation. An upstream single hop radio broadcast network can improve the perception of each cooperative driver within radio range and hence the traffic stability. The impact of a cooperative law on traffic congestion appearance is investigated, analytically and through simulation. Ngsim field data is used to calibrate the Optimal Velocity with Relative Velocity (OVRV) car following model and the MOBIL lane-changing model is implemented. Assuming that congestion can be triggered either by a perturbation in the instability domain or by a critical lane changing behavior, the calibrated car following behavior is used to assess the impact of a microscopic cooperative law on abnormal lane changing behavior. The cooperative law helps reduce and delay traffic congestion as it increases traffic flow stability.
Resumo:
Wound research is a complex multidimensional activity most effectively conducted by inter-disciplinary teams that connect studies in basic wound biology, devices and biomaterials with clinical practice. These complexities have been recognised in a new initiative through the establishment of an inter-disciplinary wound research centre in Australia; the Wound Management Innovation Cooperative Research Centre (WMI CRC). The centre is funded by the Australian Government's Cooperative Research Centre Program and a consortium of 22 participants and has a resource of US$108 million over 8 years...
Resumo:
We consider Cooperative Intrusion Detection System (CIDS) which is a distributed AIS-based (Artificial Immune System) IDS where nodes collaborate over a peer-to-peer overlay network. The AIS uses the negative selection algorithm for the selection of detectors (e.g., vectors of features such as CPU utilization, memory usage and network activity). For better detection performance, selection of all possible detectors for a node is desirable but it may not be feasible due to storage and computational overheads. Limiting the number of detectors on the other hand comes with the danger of missing attacks. We present a scheme for the controlled and decentralized division of detector sets where each IDS is assigned to a region of the feature space. We investigate the trade-off between scalability and robustness of detector sets. We address the problem of self-organization in CIDS so that each node generates a distinct set of the detectors to maximize the coverage of the feature space while pairs of nodes exchange their detector sets to provide a controlled level of redundancy. Our contribution is twofold. First, we use Symmetric Balanced Incomplete Block Design, Generalized Quadrangles and Ramanujan Expander Graph based deterministic techniques from combinatorial design theory and graph theory to decide how many and which detectors are exchanged between which pair of IDS nodes. Second, we use a classical epidemic model (SIR model) to show how properties from deterministic techniques can help us to reduce the attack spread rate.
Resumo:
In wastewater treatment plants based on anaerobic digestion, supernatant and outflows from sludge dewatering systems contain significantly high amount of ammonium. Generally, these waters are returned to the head of wastewater treatment plant (WWTP), thereby increasing the total nitrogen load of the influent flow. Ammonium from these waters can be recovered and commercially utilised using novel ion-exchange materials. Mackinnon et al. have described an approach for removal and recovery of ammonium from side stream centrate returns obtained from anaerobic digester of a typical WWTP. Most of the ammonium from side streams can potentially be removed, which significantly reduces overall inlet demand at a WWTP. However, the extent of reduction achieved depends on the level of ammonium and flow-rate in the side stream. The exchange efficiency of the ion-exchange material, MesoLite, used in the ammonium recovery process deteriorates with long-term use due to mechanical degradation and use of regenerant. To ensure that a sustainable process is utilised a range of potential applications for this “spent” MesoLite have been evaluated. The primary focus of evaluations has been use of ammonium-loaded MesoLite as a source of nitrogen and growth medium for plants. A MesoLite fertiliser has advantage over soluble fertilisers in that N is held on an insoluble matrix and is gradually released according to exchange equilibria. Many conventional N fertilisers are water-soluble and thus, instantly release all applied N into the soil solution. Loss of nutrient commonly occurs through volatilisation and/or leaching. On average, up to half of the N delivered by a typical soluble fertiliser can be lost through these processes. In this context, use of ammonium-loaded MesoLite as a fertiliser has been evaluated using standard greenhouse and field-based experiments for low fertility soils. Rye grass, a suitable test species for greenhouse trials, was grown in 1kg pots over a period of several weeks with regular irrigation. Nitrogen was applied at a range of rates using a chemical fertiliser as a control and using two MesoLite fertilisers. All other nutrients were applied in adequate amounts. All treatments were replicated three times. Plants were harvested after four weeks, and dry plant mass and N concentrations were determined. At all nitrogen application rates, ammonium-loaded MesoLite produced higher plant mass than plants fertilised by the chemical fertiliser. The lower fertiliser effectiveness of the chemical fertliser is attributed to possible loss of some N through volatilisation. The MesoLite fertilisers did not show any adverse effect on availability of macro and trace nutrients, as shown by lack of deficiency symptoms, dry matter yield and plant analyses. Nitrogen loaded on to MesoLite in the form of exchanged ammonium is readily available to plants while remaining protected from losses via leaching and volatilisation. Spent MesoLite appears to be a suitable and effective fertiliser for a wide range of soils, particularly sandy soils with poor nutrient holding capacity.