54 resultados para Absorption of water
Resumo:
Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular “wall” representative of a 30 m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier “wall” and the vehicle was obtained and the results show that a rotational stiffness of 3000 kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety.
Resumo:
This project was a step forward in developing the scientific basis for a methodology to assess the resilience of water supply systems under the impacts of climate change. The improved measure of resilience developed in this project provides an approach to assess the ability of water supply systems to absorb the pressure due changing climate while sustaining supply, and their speed of recovery in case of failure. The approach developed can be applied to any generic water supply system.
Resumo:
This research project provides a scientifically robust approach for assessing the resilience of water supply systems, which are critical infrastructure, to impacts of climate change and population growth. An approach for the identification of trigger points that allows timely and appropriate management actions to be taken to avoid catastrophic system failure is an important outcome of this project. In the current absence of a formal method to evaluate the resilience of a water supply system, the approach developed in this study was based on the characterisation of resilience of a water supply system to a range of surrogate measures. Accordingly, a set of indicators are proposed to evaluate system behaviour and logistic regression analysis was used to assess system behaviour under predicted rainfall, storage and demand conditions.
Resumo:
Three thousand liters of water were infiltrated from a 4 m diameter pond to track flow and transport inside fractured carbonates with 20-40 % porosity. Sixteen time-lapse 3D Ground Penetrating Radar (GPR) surveys with repetition intervals between 2 hrs and 5 days monitored the spreading of the water bulb in the subsurface. Based on local travel time shifts between repeated GPR survey pairs, localized changes of volumetric water content can be related to the processes of wetting, saturation and drainage. Deformation bands consisting of thin sub vertical sheets of crushed grains reduce the magnitude of water content changes but enhance flow in sheet parallel direction. This causes an earlier break through across a stratigraphic boundary compared to porous limestone without deformation bands. This experiment shows how time-lapse 3D GPR or 4D GPR can non-invasively track ongoing flow processes in rock-volumes of over 100 m3.
Resumo:
This work examined a new method of detecting small water filled cracks in underground insulation ('water trees') using data from commecially available non-destructive testing equipment. A testing facility was constructed and a computer simulation of the insulation designed in order to test the proposed ageing factor - the degree of non-linearity. This was a large industry-backed project involving an ARC linkage grant, Ergon Energy and the University of Queensland, as well as the Queensland University of Technology.
Resumo:
The focus of this paper is two-dimensional computational modelling of water flow in unsaturated soils consisting of weakly conductive disconnected inclusions embedded in a highly conductive connected matrix. When the inclusions are small, a two-scale Richards’ equation-based model has been proposed in the literature taking the form of an equation with effective parameters governing the macroscopic flow coupled with a microscopic equation, defined at each point in the macroscopic domain, governing the flow in the inclusions. This paper is devoted to a number of advances in the numerical implementation of this model. Namely, by treating the micro-scale as a two-dimensional problem, our solution approach based on a control volume finite element method can be applied to irregular inclusion geometries, and, if necessary, modified to account for additional phenomena (e.g. imposing the macroscopic gradient on the micro-scale via a linear approximation of the macroscopic variable along the microscopic boundary). This is achieved with the help of an exponential integrator for advancing the solution in time. This time integration method completely avoids generation of the Jacobian matrix of the system and hence eases the computation when solving the two-scale model in a completely coupled manner. Numerical simulations are presented for a two-dimensional infiltration problem.
Resumo:
The fate and transport of three herbicides commonly used in rice production in Japan were compared using two water management practices. The herbicides were simetryn, thiobencarb and mefenacet. The first management practice was an intermittent irrigation scheme using an automatic irrigation system (AI) with a high drainage gate and the second one was a continuous irrigation and overflow drainage scheme (CI) in experimental paddy fields. Dissipation of the herbicides appeared to follow first order kinetics with the half-lives (DT50) of 1.6-3.4 days and the DT90 (90% dissipation) of 7.4-9.8 days. The AI scheme had little drainage even during large rainfall events thus resulting in losses of less than 4% of each applied herbicide through runoff. Meanwhile the CI scheme resulted in losses of about 37%, 12% and 35% of the applied masses of simetryn, thiobencarb and mefenacet, respectively. The intermittent irrigation scheme using an automatic irrigation system with a high drainage gate saved irrigation water and prevented herbicide runoff whereas the continuous irrigation and overflow scheme resulted in significant losses of water as well as the herbicides. Maintaining the excess water storage is important for preventing paddy water runoff during significant rainfall events. The organic carbon partition coefficient Koc seems to be a strong indicator of the aquatic fate of the herbicide as compared to the water solubility (SW). However, further investigations are required to understand the relation between Koc and the agricultural practices upon the pesticide fate and transport. An extension of the water holding period up to 10 days after herbicide application based on the DT90 from the currently specified period of 3-4 days in Japan is recommended to be a good agricultural practice for controlling the herbicide runoff from paddy fields. Also, the best water management practice, which can be recommended for use during the water holding period, is the intermittent irrigation scheme using an automatic irrigation system with a high drainage gate. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Due to its remarkable mechanical and biological properties, there is considerable interest in understanding, and replicating, spider silk's stress-processing mechanisms and structure-function relationships. Here, we investigate the role of water in the nanoscale mechanics of the different regions in the spider silk fibre, and their relative contributions to stress processing. We propose that the inner core region, rich in spidroin II, retains water due to its inherent disorder, thereby providing a mechanism to dissipate energy as it breaks a sacrificial amide-water bond and gains order under strain, forming a stronger amide-amide bond. The spidroin I-rich outer core is more ordered under ambient conditions and is inherently stiffer and stronger, yet does not on its own provide high toughness. The markedly different interactions of the two proteins with water, and their distribution across the fibre, produce a stiffness differential and provide a balance between stiffness, strength and toughness under ambient conditions. Under wet conditions, this balance is destroyed as the stiff outer core material reverts to the behaviour of the inner core.