71 resultados para AQUEOUS-ELECTROLYTE
Resumo:
In this work the electrochemical formation of porous Cu/Ag materials is reported via the simple and quick method of hydrogen bubble templating. The bulk and surface composition ratio between Ag and Cu was varied in a systematic manner and was readily controlled by the concentration of precursor metal salts in the electrolyte. The incorporation of Ag within the Cu scaffold only affected the formation of well-defined pores at high Ag loading whereas the internal pore wall structure gradually transformed from dendritic to cube like and finally needle like structures, which was due to the concomitant formation of Cu2O within the structure. The materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Their surface properties were further investigated by surface enhanced Raman spectroscopy (SERS) and electrochemically probed by recording the hydrogen evolution reaction (HER) which is highly sensitive to the nature of the surface. The effect of surface composition was then investigated for its influence on two catalytic reactions namely the reduction of ferricyanide ions with thiosulphate ions and the reduction of 4-nitrophenol with NaBH4 in aqueous solution where it was found that the presence of Ag had a beneficial effect in both cases but more so in the case of nitrophenol reduction. It is believed that this material may have many more potential applications in the area of catalysis, electrocatalysis and photocatalysis.
Resumo:
Pretreatments of sugarcane bagasse by three high boiling-point polyol solutions were compared in acid-catalysed processes. Pretreatments by ethylene glycol (EG) and propylene glycol solutions containing 1.2 % H2SO4 and 10 % water at 130 °C for 30 min removed 89 % lignin from bagasse resulting in a glucan digestibility of 95 % with a cellulase loading of ~20 FPU/g glucan. Pretreatment by glycerol solution under the same conditions removed 57 % lignin with a glucan digestibility of 77 %. Further investigations with EG solutions showed that increases in acid content, pretreatment temperature and time, and decrease in water content improved pretreatment effectiveness. A good linear correlation of glucan digestibility with delignification was observed with R2 = 0.984. Bagasse samples pretreated with EG solutions were characterised by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction, which confirmed that improved glucan enzymatic digestibility is mainly due to delignification and defibrillation of bagasse. Pretreatment by acidified EG solutions likely led to the formation of EG-glycosides. Up to 36 % of the total lignin was recovered from pretreatment hydrolysate, which may improve the pretreatment efficiency of recycled EG solution.
Resumo:
Na-dodecylbenzenesulfate (SDBS), a natural anionic surfactant, has been successfully intercalated into a Ca based LDH host structure during tricalcium aluminate hydration in the presence of SDBS aqueous solution (CaAl-SDBS-LDH). The resulting product was characterized by powder X-ray diffraction (XRD), mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique, thermal analysis (TG–DTA) and scan electron microscopy (SEM). The XRD results revealed that the interlayer distance of resultant product was expanded to 30.46 Å. MIR combined with NIR spectra offered an effective method to illustrate this intercalation. The NIR spectra (6000–5500 cm−1) displayed prominent bands to expound SDBS intercalated into hydration product of C3A. And the bands around 8300 cm−1 were assigned to the second overtone of the first fundamental of CH stretching vibrations of SDBS. In addition, thermal analysis showed that the dehydration and dehydroxylation took place at ca. 220 °C and 348 °C, respectively. The SEM results appeared approximately hexagonal platy crystallites morphology for CaAl-SDBS-LDH, with particle size smaller and thinner.
Resumo:
Zero valent iron (ZVI) was prepared by reducing natural goethite (NG-ZVI) and synthetic goethite (SG-ZVI) in hydrogen at 550 °C. XRD, TEM, FESEM/EDS and specific surface area (SSA) and pore analyser were used to characterize goethites and reduced goethites. Both NG-ZVI and SG-ZVI with a size of nanoscale to several hundreds of nanometers were obtained by reducing goethites at 550 °C. The reductive capacity of the ZVIs was assessed by removal of Cr(VI) at ambient temperature in comparison with that of commercial iron powder (CIP). The effect of contact time, initial concentration and reaction temperature on Cr(VI) removal was investigated. Furthermore, the uptake mechanism was discussed according to isotherms, thermodynamic analysis and the results of XPS. The results showed that SG-ZVI had the best reductive capacity to Cr(VI) and reduced Cr(VI) to Cr(III). The results suggest that hydrogen reduction is a good approach to prepare ZVI and this type of ZVI is potentially useful in remediating heavy metals as a material of permeable reaction barrier.
Resumo:
Purpose To investigate the effects of a natural oil-based emulsion containing allantoin versus aqueous cream for preventing and managing radiation induced skin reactions (RISR). Methods and Materials A total of 174 patients were randomised and participated in the study. Patients either received Cream 1 (the natural oil-based emulsion containing allantoin) or Cream 2 (aqueous cream). Skin toxicity, pain, itching and skin-related quality of life scores were collected for up to four weeks after radiation treatment. Results Patients who received Cream 1 had a significantly lower average level of Common Toxicity Criteria at week 3 (p<0.05), but had statistically higher average levels of skin toxicity at weeks 7, 8 and 9 (all p<0.001). Similar results were observed when skin toxicity was analysed by grades. With regards to pain, patients in the Cream 2 group had a significantly higher average level of worst pain (p<0.05) and itching (p=0.046) compared to the Cream 1 group at week 3, however these differences were not observed at other weeks. In addition, there was a strong trend for Cream 2 to reduce the incidence of grade 2 or more skin toxicity in comparison to Cream 1 (p=0.056). Overall, more participants in the Cream 1 group were required to use another topical treatment at weeks 8 (p=0.049) and 9 (p=0.01). Conclusion The natural oil-based emulsion containing allantoin appears to have similar effects for managing skin toxicity compared to aqueous cream up to week 5, however, it becomes significantly less effective at later weeks into the radiation treatment and beyond treatment completion (week 6 and beyond). There were no major differences in pain, itching and skin-related quality of life. In light of these results, clinicians and patients can base their decision on costs and preferences. Overall, aqueous cream appears to be a more preferred option.
Resumo:
The hydrolysis of triasulfuron, metsulfuron-methyl and chlorsulfuron in aqueous buffer solutions and in soil suspensions at pH values ranging from 5.2 to 11.2 was investigated. Hydrolysis of all three compounds in both aqueous buffer and soil suspensions was highly pH-sensitive. The rate of hydrolysis was much faster in the acidic pH range (5.2-6.2) than under neutral and moderately alkaline conditions (8.2-9.4), but it increased rapidly as the pH exceeded 10.2. All three compounds degraded faster at pH 5.2 than at pH 11.2. Hydrolysis rates of all three compounds could be described well with pseudo-first-order kinetics. There were no significant differences (P =0.05) in the rate constants (k, day-1) of the three compounds in soil suspensions from those in buffer solutions within the pH ranges studied. A functional relationship based on the propensity of nonionic and anionic species of the herbicides to hydrolyse was used to describe the dependence of the 'rate constant' on pH. The hydrolysis involving attack by neutral water was at least 100-fold faster when the sulfonylurea herbicides were undissociated (acidic conditions) than when they were present as the anion at near neutral pH. In aqueous buffer solution at pH > 11, a prominent degradation pathway involved O-demethylation of metsulfuron-methyl to yield a highly polar degradate, and hydrolytic opening of the triazine ring. It is concluded that these herbicides are not likely to degrade substantially through hydrolysis in most agricultural (C) 2000 Society of Chemical Industry.
Resumo:
Methyl orange (MO) is a kind of anionic dye and widely used in industry. In this study, tricalcium aluminate hydrates (Ca-Al-LDHs) are used as an adsorbent to remove methyl orange (MO) from aqueous solutions. The resulting products were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), thermal analysis (TG-DTA) and scanning electron microscope (SEM). The XRD results indicated that the MO molecules were successfully intercalated into the tricalcium aluminate hydrates, with the basal spacing of Ca-Al-LDH expanding to 2.48 nm. The MIR spectrum for CaAl-MO-LDH shows obvious bands assigned to the N@N, N@H stretching vibrations and S@O, SO_ 3 group respectively, which are considered as marks to assess MO_ ion intercalation into the interlayers of LDH. The overall morphology of CaAl-MOLDH displayed a ‘‘honey-comb’’ like structure, with the adjacent layers expanded.
Resumo:
This study reports the synthesis, characterization and application of nano zero-valent iron (nZVI). The nZVI was produced by a reduction method and compared with commercial available ZVI powder for Pb2+ removal from aqueous phase. Comparing with commercial ZVI, the laboratory made nZVI powder has a much higher specific surface area. XRD patterns have revealed zero valent iron phases in two ZVI materials. Different morphologies have been observed using SEM and TEM techniques. EDX spectrums revealed even distribution of Pb on surface after reaction. The XPS analysis has confirmed that immobilized lead was present in its zero-valent and bivalent forms. ‘Core-shell’ structure of prepared ZVI was revealed based on combination of XRD and XPS characterizations. In addition, comparing with Fluka ZVI, this lab made nZVI has much higher reactivity towards Pb2+ and within just 15 mins 99.9% removal can be reached. This synthesized nano ZVI material has shown great potential for heavy metal immobilization from waste water.
Resumo:
Synthesis of high quality boron carbide (B4C) powder is achieved by carbothermal reduction of boron oxide (B2O3) from a condensed boric acid (H3BO3) / polyvinyl acetate (PVAc) product. Precursor solutions are prepared via polymerisation of vinyl acetate (VA) in methanol in the presence of dissolved H3BO3. With excess VA monomer being removed during evaporation of the solvent, the polymerisation time is then used to manage availability of carbon for reaction.
Resumo:
Lewis’s Medical-Surgical Nursing: Assessment and Management of Clinical Problems, 4th Edition is the most comprehensive go-to reference for essential information about all aspects of professional nursing care of patients. Using the nursing process as a framework for practice, the fourth edition has been extensively revised to reflect the rapid changing nature of nursing practice and the increasing focus on key nursing care priorities. Building on the strengths of the third Australian and New Zealand edition and incorporating relevant global nursing research and practice from the prominent US title Medical-Surgical Nursing, 9Th Edition, Lewis’s Medical-Surgical Nursing, 4th Edition is an essential resource for students seeking to understand the role of the professional nurse in the contemporary health environment.
Resumo:
The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA) and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) mixtures were studied by the Fenton oxidation process. Central composite design and multi-response surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was < 0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass%, pH 5.39, 35.98 °C) were 77% and 57% respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/Vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose, and coprecipitated with lepidocrocite, an iron oxyhydroxide.
Resumo:
This investigation for the removal of agricultural pollutants, imazaquin and atrazine was conducted using montmorillonite (MMT) exchanged with organic cations through ion exchange. The study found that the adsorption of the herbicides was affected by the degree of organic cation saturations, the size of organic cations and the different natures of the herbicides. The modified clays intercalated with the larger surfactant molecules at the higher concentrations tended to enhance the adsorption of imazaquin and atrazine. In particular, the organoclays were highly efficient for the removal of imazaquin while the adsorption of atrazine was minimal due to the different hydrophobicities. Both imazaquin and atrazine were influenced by the changes of pH. The amphoteric imazaquin exists as an anion at the pH 5–7 and the anionic imazaquin was protonated to a neutral and further a cationic form when the pH is lower. The weak base, atrazine was also protonated at lower pH values. The anionic imazaquin had a strong affinity to the organoclays on the external surface as well as in the interlayer space of the MMT through electrostatic and hydrophobic interactions. In this study, the electrostatic interaction can be the primary mechanism involved during the adsorption process. This study also investigated a comparative adsorption for the imazaquin and atrazine and the lower adsorption of atrazine was enhanced and this phenomenon was due to the synergetic effect. This work highlights a potential mechanism for the removal of specific persistence herbicides from the environment.
Resumo:
A series of novel thermo-responsive composite sorbents, were prepared by free-radical co-polymerization of N-isopropylacrylamide (NIPAm) and the silylanized Mg/Al layered double hydroxides (SiLDHs), named as PNIPAm-co-SiLDHs. For keeping the high affinity of Mg/Al layered double hydroxides towards anions, the layered structure of LDHs was assumed to be reserved in PNIPAm-co-SiLDHs by the silanization of the wet LDH plates as evidenced by the X-ray powder diffraction. The sorption capacity of PNIPAm-co-SiLDH (13.5 mg/g) for Orange-II from water was found to be seven times higher than that of PNIPAm (2.0 mg/g), and the sorption capacities of arsenate onto PNIPAm-co-SiLDH are also greater than that onto PNIPAm, for both As(III) and As(V). These sorption results suggest that reserved LDH structure played a significant role in enhancing the sorption capacities. NO3− intercalated LDHs composite showed the stronger sorption capacity for Orange-II than that of CO32−. After sorption, the PNIPAm-co-SiLDH may be removed from water because of its gel-like nature, and may be easily regenerated contributing to the accelerated desorption of anionic contaminants from PNIPAm-co-SiLDHs by the unique phase-transfer feature through slightly heating (to 40 °C). These recyclable and regeneratable properties of thermo-responsive nanocomposites facilitate its potential application in the in-situ remediation of organic and inorganic anions from contaminated water.
Resumo:
Recently, studies have identified high zinc levels in various environmental resources, and excessive intake of zinc has long been considered to be harmful to human health. The aim of this research was to investigate the effectiveness of tricalcium aluminate (C3A) as a removal agent of zinc from aqueous solution. Inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been used to characterize such removal behavior. The effects of various factors such as pH influence, temperature and contact time were investigated. The adsorption capacity of C3A for Zn2+ was computed to be up to 13.73 mmol g−1, and the highest zinc removal capacity was obtained when the initial pH of Zn(NO3)2 solution was between 6.0 and 7.0, with temperature around 308 K. The XRD analysis showed that the resultant products were ZnAl-LDHs. Combined with the analysis of solution component, it was proved the existence of both precipitation and cation exchange in the removal process. From the experimental results, it was clear that C3A could be potentially used as a cost-effective material for the removal of zinc in aqueous environment.