283 resultados para 4-hydroxynonénal
Resumo:
In the structure of the title compound, the salt C12H10N3O4+ C7H3N2O72-, the cations and the anions are linked by a single N+-H...O(carboxyl) hydrogen bond, the discrete cation-anion unit having no intermolecular associations other than weak cation--anion aromatic ring pi--pi interactions [ring centroid separation, 3.7320(14)A] and a number of weak inter-unit aromatic C-H...O contacts.
Resumo:
In the title isonipecotamide salt 2C6H13N2O+.C12H8O6S22-,the asymmetric unit comprises one biphenyl-4,4'-disulfonate dianion which lies across a crystallographic inversion centre and another in a general position [dihedral angle between the two phenyl rings is 37.1(1)deg], together with three isonipecotamide cations. Two of these cations give a cyclic homomeric amide-amide dimer interaction [graph set R2/2(8)],the other giving a similar dimeric interaction but across an inversion centre, both dimers then forming lateral cyclic R2/4(8) pyrimidinium N-H...O interactions. These units are linked longitudinally to the sulfonate groups of the dianions through piperidinium N-H...O hydrogen bonds, giving a three-dimensional framework structure.
Resumo:
In the structure of the title compound, C6H13N2O+ C2H3O2- . H2O, the amide H atoms of the cations form centrosymetric cyclic hydrogen-bonding associations incorporating two water molecules [graph set R^2^~4~(8)], which are conjoint with cyclic water-bridged amide-amide associations [R^4^~4~(12)] and larger R4/4(20) associations involving the water molecule and the acetate anions, which bridge through the piperidinium H donors, giving an overall three-dimensional framework structure.
Resumo:
In the structure of the title compound, C6H13N2O+ C8H7O2- . 0.5H2O, the asymmetric unit comprises two isonipecotamide cations, two phenylacetate anions and a water molecule of solvation. The hydrogen-bonding environments for both sets of ion pairs are essentially identical with the piperidinium and amide 'ends' of each cation involved in lateral heteromolecular hydrogen-bonded cyclic N---H...O associations [graph set R2/2(11)] which incorporate a single carboxyl O-atom acceptor. These cyclic motifs enclose larger R5/5(21) cyclic systems forming sheet substructures which lie parallel to (101) and are linked across b by the single water molecule via water O---H...O(carboxyl) associations to give a two-dimensional duplex-sheet structure
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (4-carbamoylpiperidine) with picric acid and 3,5-dinitrosalicylic acid, namely 4-carbamoylpiperidinium 2,4,6-trinitrophenolate, C6H13N2O8+ C6H2N3O7- (I) and 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate, C6H13N2O8+ C7H3N2O7-: two forms, the monoclinic alpha-polymorph (II) and the triclinic beta-polymorph (III) have been determined at 200 K. All compounds form hydrogen-bonded structures, one-dimensional in (II), two-dimensional in (I) and three-dimensional in (III). In (I), the cations form centrosymmetric cyclic head-to-tail hydrogen-bonded homodimers [graph set R2/2(14)] through lateral duplex piperidinium N---H...O(amide) interactions. These dimers are extended into a two-dimensional network structure through further interactions with anion phenolate-O and nitro-O acceptors, including a direct symmetric piperidinium N-H...O(phenol),O(nitro) cation--anion association [graph set R2/1(6)]. The monoclinic polymorph (II) has a similar R2/1(6) cation-anion hydrogen-bonding interaction to (I) but with an additional conjoint symmetrical R1/2(4) interaction as well as head-to-tail piperidinium N-H...O(amide) O hydrogen bonds and amide N-H...O(carboxyl) hydrogen bonds, give a network structure which include large R3/4(20) rings. The hydrogen bonding in the triclinic polymorph (III) is markedly different from that of monoclinic (II). The asymmetric unit contains two independent cation-anion pairs which associate through cyclic piperidinium N-H...O,O'(carboxyl) interactions [graph set R2/1(4)]. The cations also show the zig-zag head-to-tail piperidinium N-H...O(amide) hydrogen-bonded chain substructures found in (II) but in addition feature amide N-H...O(nitro) and O(phenolate) and amide N-H...O(nitro) associations. As well there is a centrosymmetric double-amide N-H...O(carboxyl) bridged bis(cation-anion) ring system [graph set R2/4(8)] in the three-dimensional framework. The structures reported here demonstrate the utility of the isonipecotamide cation as a synthon with previously unrecognized potential for structure assembly applications. Furthermore, the structures of the two polymorphic 3,5-dinitrosalicylic acid salts show an unusual dissimilarity in hydrogen-bonding characteristics, considering that both were obtained from identical solvent systems.
Resumo:
In the structure of the title compound, C6H13N2O+ C7H4NO5-, the isonipecotamide cations and the 5-nitrosalicylate anions form hydrogen-bonded chain substructures through head-to-tail piperidinium N---H...O(carboxyl) hydrogen bonds and through centrosymmetric cyclic head-to-head amide-amide hydrogen-bonding associations [graph set R2/2(8)]. These chains are cross linked by amide N---H...O~carboxyl~ and piperidinium N-H...O(nitro) associations to give a two-dimensional sheet structure.
Resumo:
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2.H2O was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As-OH units together with the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O-H...O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2- units in the crystal structure of burgessite was proved in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison.
Resumo:
In the structure of the title salt adduct, C6H13N2O+ C8H5O4- . C8H6O4, the asymmetric unit comprises one isonipecotamide cation, a hydrogen phthalate anion and a phthalic acid adduct molecule and form a two-dimensional hydrogen-bonded network through head-to-tail cation-anion-adduct molecule interactions which include a cyclic heteromolecular amide--carboxylate motif [graph set R2/2(8)], conjoint cyclic R2/2(6) and R3/3(10) piperidinium N-H...O(carboxyl) associations, as well as strong carboxylic acid O-H...O(carboxyl) hydrogen bonds.
Resumo:
The structure of the pseudo-merohedrally twinned crystal of the 1:1 proton-transfer compound of 5-sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid) with 4-aminopyridine: 4-aminopyridinium 3-carboxy-4-hydroxybenzenesulfonate sesquihydrate has been determined at 180 K and the hydrogen-bonding pattern is described. Crystals of the compound are monoclinic with space group P21/c, with unit cell dimensions a = 35.2589(8), b = 7.1948(1), c = 24.5851(5) Å, β = 110.373(2)o, and Z = 16. The monoclinic asymmetric unit comprises four cation-anion pairs and six water molecules of solvation with only the pyridinium cations having pseudo-symmetry as a result of inter-cation aromatic ring π-π stacking effects. Extensive hydrogen bonding gives a three-dimensional framework structure.
Resumo:
This work by Richard Shapcott is, as the title provides, an introduction to international ethics. By taking a quick glance at the table of contents (see Figure 1) we see that he has systematically divided this particular discourse into its normative areas of concern (in other words its major areas of argument or research). When reading, we also see that a great deal of work has gone into the publication because the narrative is flowing, the arguments continuous, and because the tone of the work maintained its critical position throughout.
Resumo:
In the structure of title compound [ZnI2(C12H10N2O2)2] from the reaction of 4-(4-nitrobenzyl)pyridine with zinc(II) iodide, the asymmetric unit contains two independent discrete distorted tetrahedral complex units [Zn-I range, 2.5472(8)-2.5666(7)A; Zn-N range, 2.044(4)-2.052(4)A], which are essentially identical conformationally and exist in the crystal structure as a racemic twin.
Resumo:
Raman spectroscopy has enabled insights into the molecular structure of the richelsdorfite Ca2Cu5Sb[Cl|(OH)6|(AsO4)4]·6H2O. This mineral is based upon the incorporation of arsenate or phosphate with chloride anion into the structure and as a consequence the spectra reflect the bands attributable to these anions, namely arsenate or phosphate and chloride. The richelsdorfite Raman spectrum reflects the spectrum of the arsenate anion and consists of ν1 at 849, ν2 at 344 cm−1, ν3 at 835 and ν4 at 546 and 498 cm−1. A band at 268 cm−1 is attributed to CuO stretching vibration. Low wavenumber bands at 185 and 144 cm−1 may be assigned to CuCl TO/LO optic vibrations.
Resumo:
The mineral delvauxite CaFe3+4(PO4,SO4)2(OH)8•4-6H2O has been characterised by Raman spectroscopy and infrared spectroscopy. The mineral is associated with the minerals diadochite and destinezite. Delvauxite appears to vary in crystallinity from amorphous to semi-crystalline. The mineral is often X-ray non-diffracting. The minerals are found in soils and may be described as ‘colloidal’ minerals. Vibrational spectroscopy enables determination of the molecular structure of delvauxite. Bands are assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both the phosphate and sulphate symmetric stretching modes support the concept of non-equivalent phosphate and sulphate units in the mineral structure. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths.