457 resultados para 3D measurement
Resumo:
The measurement of Cobb angles on radiographs of patients with spinal deformities is routine practice in spinal clinics. The technique relies on the use and availability of specialist equipment such as a goniometer, cobbometer or protractor. The aim of this study was to validate the use of i-Phone (Apple Inc) combined with Tilt Meter Pro software as compared to a protractor in the measurement of Cobb angles. The i-Phone combined with Tilt Meter Pro software offers a faster alternative to the traditional method of Cobb angle measurement. The use of i-Phone offers a more convenient way of measuring Cobb angles in the outpatient setting. The intra-observer repeatability of the iPhone is equivalent to the protractor in the measurement of Cobb angles.
Resumo:
Adolescent idiopathic scoliosis (AIS) is the most common form of spinal deformity in paediatrics, prevalent in approximately 2-4% of the general population. While it is a complex three-dimensional deformity, it is clinically characterised by an abnormal lateral curvature of the spine. The treatment for severe deformity is surgical correction with the use of structural implants. Anterior single rod correction employs a solid rod connected to the anterior spine via vertebral body screws. Correction is achieved by applying compression between adjacent vertebral body screws, before locking each screw onto the rod. Biomechanical complication rates have been reported as high as 20.8%, and include rod breakage, screw pull-out and loss of correction. Currently, the corrective forces applied to the spine are unknown. These forces are important variables to consider in understanding the biomechanics of scoliosis correction. The purpose of this study was to measure these forces intra-operatively during anterior single rod AIS correction.
Resumo:
Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved
Resumo:
Summary Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections. Introduction Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone. Methods Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts. Results The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections. Conclusions This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.
Resumo:
The validation of Computed Tomography (CT) based 3D models takes an integral part in studies involving 3D models of bones. This is of particular importance when such models are used for Finite Element studies. The validation of 3D models typically involves the generation of a reference model representing the bones outer surface. Several different devices have been utilised for digitising a bone’s outer surface such as mechanical 3D digitising arms, mechanical 3D contact scanners, electro-magnetic tracking devices and 3D laser scanners. However, none of these devices is capable of digitising a bone’s internal surfaces, such as the medullary canal of a long bone. Therefore, this study investigated the use of a 3D contact scanner, in conjunction with a microCT scanner, for generating a reference standard for validating the internal and external surfaces of a CT based 3D model of an ovine femur. One fresh ovine limb was scanned using a clinical CT scanner (Phillips, Brilliance 64) with a pixel size of 0.4 mm2 and slice spacing of 0.5 mm. Then the limb was dissected to obtain the soft tissue free bone while care was taken to protect the bone’s surface. A desktop mechanical 3D contact scanner (Roland DG Corporation, MDX 20, Japan) was used to digitise the surface of the denuded bone. The scanner was used with the resolution of 0.3 × 0.3 × 0.025 mm. The digitised surfaces were reconstructed into a 3D model using reverse engineering techniques in Rapidform (Inus Technology, Korea). After digitisation, the distal and proximal parts of the bone were removed such that the shaft could be scanned with a microCT (µCT40, Scanco Medical, Switzerland) scanner. The shaft, with the bone marrow removed, was immersed in water and scanned with a voxel size of 0.03 mm3. The bone contours were extracted from the image data utilising the Canny edge filter in Matlab (The Mathswork).. The extracted bone contours were reconstructed into 3D models using Amira 5.1 (Visage Imaging, Germany). The 3D models of the bone’s outer surface reconstructed from CT and microCT data were compared against the 3D model generated using the contact scanner. The 3D model of the inner canal reconstructed from the microCT data was compared against the 3D models reconstructed from the clinical CT scanner data. The disparity between the surface geometries of two models was calculated in Rapidform and recorded as average distance with standard deviation. The comparison of the 3D model of the whole bone generated from the clinical CT data with the reference model generated a mean error of 0.19±0.16 mm while the shaft was more accurate(0.08±0.06 mm) than the proximal (0.26±0.18 mm) and distal (0.22±0.16 mm) parts. The comparison between the outer 3D model generated from the microCT data and the contact scanner model generated a mean error of 0.10±0.03 mm indicating that the microCT generated models are sufficiently accurate for validation of 3D models generated from other methods. The comparison of the inner models generated from microCT data with that of clinical CT data generated an error of 0.09±0.07 mm Utilising a mechanical contact scanner in conjunction with a microCT scanner enabled to validate the outer surface of a CT based 3D model of an ovine femur as well as the surface of the model’s medullary canal.
Resumo:
The generic IS-success constructs first identified by DeLone and McLean (1992) continue to be widely employed in research. Yet, recent work by Petter et al (2007) has cast doubt on the validity of many mainstream constructs employed in IS research over the past 3 decades; critiquing the almost universal conceptualization and validation of these constructs as reflective when in many studies the measures appear to have been implicitly operationalized as formative. Cited examples of proper specification of the Delone and McLean constructs are few, particularly in light of their extensive employment in IS research. This paper introduces a four-stage formative construct development framework: Conceive > Operationalize > Respond > Validate (CORV). Employing the CORV framework in an archival analysis of research published in top outlets 1985-2007, the paper explores the extent of possible problems with past IS research due to potential misspecification of the four application-related success dimensions: Individual-Impact, Organizational-Impact, System-Quality and Information-Quality. Results suggest major concerns where there is a mismatch of the Respond and Validate stages. A general dearth of attention to the Operationalize and Respond stages in methodological writings is also observed.
Resumo:
The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone at the calcaneus was first described in 1984. The assessment of osteoporosis by BUA has recently been recognized by Universities UK, within its EurekaUK book, as being one of the “100 discoveries and developments in UK Universities that have changed the world” over the past 50 years, covering the whole academic spectrum from the arts and humanities to science and technology. Indeed, BUA technique has been clinically validated and is utilized worldwide, with at least seven commercial systems providing calcaneal BUA measurement. However, a fundamental understanding of the dependence of BUA upon the material and structural properties of cancellous bone is still lacking. This review aims to provide a science- and technology-orientated perspective on the application of BUA to the medical disease of osteoporosis.
Resumo:
Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(varepsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
Resumo:
In the design of tissue engineering scaffolds, design parameters including pore size, shape and interconnectivity, mechanical properties and transport properties should be optimized to maximize successful inducement of bone ingrowth. In this paper we describe a 3D micro-CT and pore partitioning study to derive pore scale parameters including pore radius distribution, accessible radius, throat radius, and connectivity over the pore space of the tissue engineered constructs. These pore scale descriptors are correlated to bone ingrowth into the scaffolds. Quantitative and visual comparisons show a strong correlation between the local accessible pore radius and bone ingrowth; for well connected samples a cutoff accessible pore radius of approximately 100 microM is observed for ingrowth. The elastic properties of different types of scaffolds are simulated and can be described by standard cellular solids theory: (E/E(0))=(rho/rho(s))(n). Hydraulic conductance and diffusive properties are calculated; results are consistent with the concept of a threshold conductance for bone ingrowth. Simple simulations of local flow velocity and local shear stress show no correlation to in vivo bone ingrowth patterns. These results demonstrate a potential for 3D imaging and analysis to define relevant pore scale morphological and physical properties within scaffolds and to provide evidence for correlations between pore scale descriptors, physical properties and bone ingrowth.
Resumo:
The advantages of using a balanced approach to measurement of overall organisational performance are well-known. We examined the effects of a balanced approach in the more specific domain of measuring innovation effectiveness in 144 small to medium sized companies in Australia and Thailand. We found that there were no differences in the metrics used by Australian and Thai companies. In line with our hypotheses, we found that those SMEs that took a balanced approach were more likely to perceive benefits of implemented innovations than those that used only a financial approach to measurement. The perception of benefits then had a subsequent effect on overall attitudes towards innovation. The study shows the importance of measuring both financial and non-financial indicators of innovation effectiveness within SMEs and discusses ways in which these can be conducted with limited resources.
Resumo:
Practitioners and academics often assume that investments in innovation will lead to organizational improvements. However, previous research has often shown that implemented innovations fail to realise these potential improvements. On the other hand, organisation, perhaps, has been growing and productive because of the innovation, but traditional measurements have failed to capture that growth. In order to help organizations capture their innovation performance effectively, this study examined the organizations which employ different types of performance measurement and their perception of innovation effectiveness.
Resumo:
Since the 1980s, industries and researchers have sought to better understand the quality of services due to the rise in their importance (Brogowicz, Delene and Lyth 1990). More recent developments with online services, coupled with growing recognition of service quality (SQ) as a key contributor to national economies and as an increasingly important competitive differentiator, amplify the need to revisit our understanding of SQ and its measurement. Although ‘SQ’ can be broadly defined as “a global overarching judgment or attitude relating to the overall excellence or superiority of a service” (Parasuraman, Berry and Zeithaml 1988), the term has many interpretations. There has been considerable progress on how to measure SQ perceptions, but little consensus has been achieved on what should be measured. There is agreement that SQ is multi-dimensional, but little agreement as to the nature or content of these dimensions (Brady and Cronin 2001). For example, within the banking sector, there exist multiple SQ models, each consisting of varying dimensions. The existence of multiple conceptions and the lack of a unifying theory bring the credibility of existing conceptions into question, and beg the question of whether it is possible at some higher level to define SQ broadly such that it spans all service types and industries. This research aims to explore the viability of a universal conception of SQ, primarily through a careful re-visitation of the services and SQ literature. The study analyses the strengths and weaknesses of the highly regarded and widely used global SQ model (SERVQUAL) which reflects a single-level approach to SQ measurement. The SERVQUAL model states that customers evaluate SQ (of each service encounter) based on five dimensions namely reliability, assurance, tangibles, empathy and responsibility. SERVQUAL, however, failed to address what needs to be reliable, assured, tangible, empathetic and responsible. This research also addresses a more recent global SQ model from Brady and Cronin (2001); the B&C (2001) model, that has potential to be the successor of SERVQUAL in that it encompasses other global SQ models and addresses the ‘what’ questions that SERVQUAL didn’t. The B&C (2001) model conceives SQ as being multidimensional and multi-level; this hierarchical approach to SQ measurement better reflecting human perceptions. In-line with the initial intention of SERVQUAL, which was developed to be generalizable across industries and service types, this research aims to develop a conceptual understanding of SQ, via literature and reflection, that encompasses the content/nature of factors related to SQ; and addresses the benefits and weaknesses of various SQ measurement approaches (i.e. disconfirmation versus perceptions-only). Such understanding of SQ seeks to transcend industries and service types with the intention of extending our knowledge of SQ and assisting practitioners in understanding and evaluating SQ. The candidate’s research has been conducted within, and seeks to contribute to, the ‘IS-Impact’ research track of the IT Professional Services (ITPS) Research Program at QUT. The vision of the track is “to develop the most widely employed model for benchmarking Information Systems in organizations for the joint benefit of research and practice.” The ‘IS-Impact’ research track has developed an Information Systems (IS) success measurement model, the IS-Impact Model (Gable, Sedera and Chan 2008), which seeks to fulfill the track’s vision. Results of this study will help future researchers in the ‘IS-Impact’ research track address questions such as: • Is SQ an antecedent or consequence of the IS-Impact model or both? • Has SQ already been addressed by existing measures of the IS-Impact model? • Is SQ a separate, new dimension of the IS-Impact model? • Is SQ an alternative conception of the IS? Results from the candidate’s research suggest that SQ dimensions can be classified at a higher level which is encompassed by the B&C (2001) model’s 3 primary dimensions (interaction, physical environment and outcome). The candidate also notes that it might be viable to re-word the ‘physical environment quality’ primary dimension to ‘environment quality’ so as to better encompass both physical and virtual scenarios (E.g: web sites). The candidate does not rule out the global feasibility of the B&C (2001) model’s nine sub-dimensions, however, acknowledges that more work has to be done to better define the sub-dimensions. The candidate observes that the ‘expertise’, ‘design’ and ‘valence’ sub-dimensions are supportive representations of the ‘interaction’, physical environment’ and ‘outcome’ primary dimensions respectively. The latter statement suggests that customers evaluate each primary dimension (or each higher level of SQ classification) namely ‘interaction’, physical environment’ and ‘outcome’ based on the ‘expertise’, ‘design’ and ‘valence’ sub-dimensions respectively. The ability to classify SQ dimensions at a higher level coupled with support for the measures that make up this higher level, leads the candidate to propose the B&C (2001) model as a unifying theory that acts as a starting point to measuring SQ and the SQ of IS. The candidate also notes, in parallel with the continuing validation and generalization of the IS-Impact model, that there is value in alternatively conceptualizing the IS as a ‘service’ and ultimately triangulating measures of IS SQ with the IS-Impact model. These further efforts are beyond the scope of the candidate’s study. Results from the candidate’s research also suggest that both the disconfirmation and perceptions-only approaches have their merits and the choice of approach would depend on the objective(s) of the study. Should the objective(s) be an overall evaluation of SQ, the perceptions-only approached is more appropriate as this approach is more straightforward and reduces administrative overheads in the process. However, should the objective(s) be to identify SQ gaps (shortfalls), the (measured) disconfirmation approach is more appropriate as this approach has the ability to identify areas that need improvement.
Resumo:
In a typical collaborative application, users contends for common resources by mutual exclusion. The introduction of multi-modal environment, however, introduced problems such as frequent dropping of connection or limited connectivity speed of mobile users. This paper target 3D resources which require additional considerations such as dependency of users' manipulation command. This paper introduces Dynamic Locking Synchronisation technique to enable seamless and collaborative environment for large number of user, by combining the contention-free concepts of locking mechanism and the seamless nature of lockless design.
Resumo:
Multi-resolution modelling has become essential as modern 3D applications demand 3D objects with higher LODs (LOD). Multi-modal devices such as PDAs and UMPCs do not have sufficient resources to handle the original 3D objects. The increased usage of collaborative applications has created many challenges for remote manipulation working with 3D objects of different quality. This paper studies how we can improve multi-resolution techniques by performing multiedge decimation and using annotative commands. It also investigates how devices with poorer quality 3D object can participate in collaborative actions.
Resumo:
Understanding users' capabilities, needs and expectations is key to the domain of Inclusive Design. Much of the work in the field could be informed and further strengthened by clear, valid and representative data covering the full range of people's capabilities. This article reviews existing data sets and identifies the challenges inherent in measuring capability in a manner that is informative for work in Inclusive Design. The need for a design-relevant capability data set is identified and consideration is given to a variety of capability construct operationalisation issues including questions associated with self-report and performance measures, sampling and the appropriate granularity of measures. The need for further experimental work is identified and a programme of research designed to culminate in the design of a valid and reliable capability survey is described.