140 resultados para 13C corrected
Resumo:
STUDY OBJECTIVES: To determine whether cerebral metabolite changes may underlie abnormalities of neurocognitive function and respiratory control in OSA. DESIGN: Observational, before and after CPAP treatment. SETTING: Two tertiary hospital research institutes. PARTICIPANTS: 30 untreated severe OSA patients, and 25 age-matched healthy controls, all males free of comorbidities, and all having had detailed structural brain analysis using voxel-based morphometry (VBM). MEASUREMENTS AND RESULTS: Single voxel bilateral hippocampal and brainstem, and multivoxel frontal metabolite concentrations were measured using magnetic resonance spectroscopy (MRS) in a high resolution (3T) scanner. Subjects also completed a battery of neurocognitive tests. Patients had repeat testing after 6 months of CPAP. There were significant differences at baseline in frontal N-acetylaspartate/choline (NAA/Cho) ratios (patients [mean (SD)] 4.56 [0.41], controls 4.92 [0.44], P = 0.001), and in hippocampal choline/creatine (Cho/Cr) ratios (0.38 [0.04] vs 0.41 [0.04], P = 0.006), (both ANCOVA, with age and premorbid IQ as covariates). No longitudinal changes were seen with treatment (n = 27, paired t tests), however the hippocampal differences were no longer significant at 6 months, and frontal NAA/Cr ratios were now also significantly different (patients 1.55 [0.13] vs control 1.65 [0.18] P = 0.01). No significant correlations were found between spectroscopy results and neurocognitive test results, but significant negative correlations were seen between arousal index and frontal NAA/Cho (r = -0.39, corrected P = 0.033) and between % total sleep time at SpO(2) < 90% and hippocampal Cho/Cr (r = -0.40, corrected P = 0.01). CONCLUSIONS: OSA patients have brain metabolite changes detected by MRS, suggestive of decreased frontal lobe neuronal viability and integrity, and decreased hippocampal membrane turnover. These regions have previously been shown to have no gross structural lesions using VBM. Little change was seen with treatment with CPAP for 6 months. No correlation of metabolite concentrations was seen with results on neurocognitive tests, but there were significant negative correlations with OSA severity as measured by severity of nocturnal hypoxemia. CITATION: O'Donoghue FJ; Wellard RM; Rochford PD; Dawson A; Barnes M; Ruehland WR; Jackson ML; Howard ME; Pierce RJ; Jackson GD. Magnetic resonance spectroscopy and neurocognitive dysfunction in obstructive sleep apnea before and after CPAP treatment.
Resumo:
The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) is considered to be an inert solvent of cellulose and lignocellulosic biomass. Acetylation (1.7 % mol, or DS 0.017) of cellulose after dissolution in [C2mim]OAc (150 °C for 20 min), is demonstrated by compositional analysis, FTIR analysis and 13C NMR spectroscopy (in [C2min]OAc with 13C enriched acetate). This acetylation, in the absence of added acylating agents, has not been reported before and may limit [C2mim]OAc utility in industrial scale biomass processing, even at this low extent. For example, cellulose acetylation may contribute to IL loss in processes where the IL is recovered and reused and inhibit enzyme saccharification of cellulose in lignocellulosic biofuel production processes based on saccharification and fermentation.
Resumo:
Neoproterozoic glacigenic formations are preserved in the Kimberley region and northwestern Northern Territory of northern Australia. They are distributed in the west Kimberley adjacent to the northern margins of the King Leopold Orogen, the Mt Ramsay area at the junction of the King Leopold and Halls Creek Orogens, and the east Kimberley, adjacent to the eastern margin of the Halls Creek Orogen. Small outlier glacigenic deposits are preserved in the Litchfield Province, Northern Territory (Uniya Formation) and Georgina Basin, western Queensland (Little Burke Formation). Glacigenic strata comprise diamictite, conglomerate, sandstone and pebbly mudstone and characterize the Walsh, Landrigan and Fargoo/Moonlight Valley formations. Thin units of laminated dolomite sit conformably at the top of the Walsh, Landrigan and Moonlight Valley formations. Glacigenic units are also interbedded with the carbonate platform deposits of the Egan Formation and Boonall Dolomite. δ13C data are available for all carbonate units. There is no direct chronological constraint on these successions. Dispute over regional correlation of the Neoproterozoic succession has been largely resolved through biostratigraphic, chemostratigraphic and lithostratigraphic analysis. However, palaeomagnetic results from the Walsh Formation are inconsistent with sedimentologically based correlations. Two stratigraphically defined glaciations are preserved in northwestern Australia: the ‘Landrigan Glaciation’, characterized by southwest-directed continental ice-sheet movement and correlated with late Cryogenian glaciation elsewhere in Australia and the world; and, the ‘Egan Glaciation’, a more localized glaciation of the Ediacaran Period. Future research focus should include chronology, palaeomagnetic constraint and tectonostratigraphic controls on deposition.
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.
Resumo:
This paper seeks to explain the lagging productivity in Singapore’s manufacturing noted in the statements of the Economic Strategies Committee Report 2010. Two methods are employed: the Malmquist productivity to measure total factor productivity change and Simar and Wilson’s (J Econ, 136:31–64, 2007) bootstrapped truncated regression approach. In the first stage, the nonparametric data envelopment analysis is used to measure technical efficiency. To quantify the economic drivers underlying inefficiencies, the second stage employs a bootstrapped truncated regression whereby bias-corrected efficiency estimates are regressed against explanatory variables. The findings reveal that growth in total factor productivity was attributed to efficiency change with no technical progress. Most industries were technically inefficient throughout the period except for ‘Pharmaceutical Products’. Sources of efficiency were attributed to quality of worker and flexible work arrangements while incessant use of foreign workers lowered efficiency.
Resumo:
Through a screen to identify genes that induce multi-drug resistance when overexpressed, we have identified a fission yeast homolog of Int-6, a component of the human translation initiation factor eIF3. Disruption of the murine Int-6 gene by mouse mammary tumor virus (MMTV) has been implicated previously in tumorigenesis, although the underlying mechanism is not yet understood. Fission yeast Int6 was shown to interact with other presumptive components of eIF3 in vivo, and was present in size fractions consistent with its incorporation into a 43S translation preinitiation complex. Drug resistance induced by Int6 overexpression was dependent on the AP-1 transcription factor Pap1, and was associated with increased abundance of Pap1-responsive mRNAs, but not with Pap1 relocalization. Fission yeast cells lacking the int6 gene grew slowly. This growth retardation could be corrected by the expression of full length Int6 of fission yeast or human origin, or by a C-terminal fragment of the fission yeast protein that also conferred drug resistance, but not by truncated human Int-6 proteins corresponding to the predicted products of MMTV-disrupted murine alleles. Studies in fission yeast may therefore help to explain the ways in which Int-6 function can be perturbed during MMTV-induced mammary tumorigenesis.
Resumo:
This paper attempts, using data from the British Labour Force Survey 1996, to examine to what extent differences in labour market outcomes between able-bodied and disabled men may be attributed to differences in endowments of human capital and associated productivity differences. Both labour force participation and selectivity corrected human capital equations are estimated and decomposition techniques applied to them. Using the methodology of Baldwin and Johnson [Baldwin, M., Johnson, W.G., 1994. Labor market discrimination against men with disabilities. Journal of Human Resources, XXIX(1), Winter, 1–19], the employment effects of wage discrimination against the disabled are also estimated. Evidence of both substantial wage and participation rate differences between able-bodied and disabled men are found, which have implications for the operation of the 1995 Disability Discrimination Act.
Resumo:
Purpose: Clinical studies suggest that foot pain may be problematic in one-third of patients in early disease. The Foot Health Status Questionnaire (FHSQ) was developed and validated to evaluate the effectiveness of conservative (orthoses, taping, stretching) and surgery interventions. Despite this fact, there are few validated instruments that measure foot health status in Spanish. Thus, the primary aim of the current study was to translate and evaluate psychometrically a Spanish version of FHSQ. Methods: A cross-sectional study was designed in a university community-based podiatric clinic located in south of Spain. All participants (n = 107) recruited consecutively completed a Spanish version of FHSQ and EuroQoL Health Questionnaire 5 dimensions, and 29 participants repeated these same measures 48 h later. Data analysis included test–retest reliability, construct and criterion-related validity and factor analyses. Results: Construct validity was appropriate with moderate-to-high corrected item–subscale correlations (α = ≥0.739) for all subscales. Test–retest reliability was satisfactory (ICC > 0.932). Factor analysis revealed four dimensions with 86.6 % of the common variance explained. The confirmatory factor analysis findings demonstrated that the proposed structure was well supported (comparative fit index = 0.92, standardized root mean square = 0.09). The Spanish EuroQoL 5D score negatively correlated with the FHSQ pain (r = −0.445) and positively with general foot health and function (r = 0.261 − 0.579), confirming criterion-related validity. Conclusion: The clinimetric properties of the Spanish version of FHSQ were satisfactory.
Resumo:
3D models of long bones are being utilised for a number of fields including orthopaedic implant design. Accurate reconstruction of 3D models is of utmost importance to design accurate implants to allow achieving a good alignment between two bone fragments. Thus for this purpose, CT scanners are employed to acquire accurate bone data exposing an individual to a high amount of ionising radiation. Magnetic resonance imaging (MRI) has been shown to be a potential alternative to computed tomography (CT) for scanning of volunteers for 3D reconstruction of long bones, essentially avoiding the high radiation dose from CT. In MRI imaging of long bones, the artefacts due to random movements of the skeletal system create challenges for researchers as they generate inaccuracies in the 3D models generated by using data sets containing such artefacts. One of the defects that have been observed during an initial study is the lateral shift artefact occurring in the reconstructed 3D models. This artefact is believed to result from volunteers moving the leg during two successive scanning stages (the lower limb has to be scanned in at least five stages due to the limited scanning length of the scanner). As this artefact creates inaccuracies in the implants designed using these models, it needs to be corrected before the application of 3D models to implant design. Therefore, this study aimed to correct the lateral shift artefact using 3D modelling techniques. The femora of five ovine hind limbs were scanned with a 3T MRI scanner using a 3D vibe based protocol. The scanning was conducted in two halves, while maintaining a good overlap between them. A lateral shift was generated by moving the limb several millimetres between two scanning stages. The 3D models were reconstructed using a multi threshold segmentation method. The correction of the artefact was achieved by aligning the two halves using the robust iterative closest point (ICP) algorithm, with the help of the overlapping region between the two. The models with the corrected artefact were compared with the reference model generated by CT scanning of the same sample. The results indicate that the correction of the artefact was achieved with an average deviation of 0.32 ± 0.02 mm between the corrected model and the reference model. In comparison, the model obtained from a single MRI scan generated an average error of 0.25 ± 0.02 mm when compared with the reference model. An average deviation of 0.34 ± 0.04 mm was seen when the models generated after the table was moved were compared to the reference models; thus, the movement of the table is also a contributing factor to the motion artefacts.
Resumo:
Aims: To identify risk factors for major Adverse Events (AEs) and to develop a nomogram to predict the probability of such AEs in individual patients who have surgery for apparent early stage endometrial cancer. Methods: We used data from 753 patients who were randomized to either total laparoscopic hysterectomy or total abdominal hysterectomy in the LACE trial. Serious adverse events that prolonged hospital stay or postoperative adverse events (using common terminology criteria 3+, CTCAE V3) were considered major AEs. We analyzed pre-surgical characteristics that were associated with the risk of developing major AEs by multivariate logistic regression. We identified a parsimonious model by backward stepwise logistic regression. The six most significant or clinically important variables were included in the nomogram to predict the risk of major AEs within 6 weeks of surgery and the nomogram was internally validated. Results: Overall, 132 (17.5%) patients had at least one major AE. An open surgical approach (laparotomy), higher Charlson’s medical co-morbidities score, moderately differentiated tumours on curettings, higher baseline ECOG score, higher body mass index and low haemoglobin levels were associated with AE and were used in the nomogram. The bootstrap corrected concordance index of the nomogram was 0.63 and it showed good calibration. Conclusions: Six pre-surgical factors independently predicted the risk of major AEs. This research might form the basis to develop risk reduction strategies to minimize the risk of AEs among patients undergoing surgery for apparent early stage endometrial cancer.
Duration-dependant response of mixed-method pre-cooling for intermittent-sprint exercise in the heat
Resumo:
This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.
Resumo:
Purpose. Contrast adaptation may induce an error signal for emmetropization. This research aims to determine whether reading causes contrast adaptation in children and, if so, to determine whether myopes exhibit greater contrast adaptation than emmetropes. Methods. Baseline contrast sensitivity was determined in 34 emmetropic and 34 spectacle-corrected myopic children for 0.5, 1.2, 2.7, 4.4, and 6.2 cycles per degree (cpd) horizontal sine-wave gratings. Effects of near tasks on contrast sensitivity were determined during periods spent looking at a 6.2 cpd horizontal grating and during periods spent reading lines of English text, with 1.2 cpd row frequency and 6 cpd stroke frequency. Results. Both emmetropic and myopic groups (mean ± SD; age, 10.3 ± 1.4 years) showed reduced contrast sensitivity during both near tasks, with greatest overall adaptation at 6.2 cpd. Adaptation induced by viewing the grating (0.15 ± 0.17 log unit [40%]; range, 0.07-0.27 log unit) was significantly greater than adaptation induced by reading text (0.11 ± 0.18 log unit [29%], 0.08-0.16 log unit) (F(1,594) = 10.7; P = 0.001). Myopic children showed significantly greater adaptation across the tasks (0.15 ± 0.18 log unit [42%]) than emmetropic children (0.10 ± 0.16 log unit [26%]) (F(1,66) = 7.30; P = 0.009), with the greatest difference occurring at 4.4 cpd (mean, 0.11 log unit [30%]). Conclusions. Grating and reading tasks induced contrast adaptation; viewing horizontal gratings induced greater adaptation than reading, and myopes exhibited greater adaptation than emmetropes. Contrast adaptation effects may underlie findings of prolonged near work being associated with myopia. However, our research does not show whether this is consequential or causal.
Resumo:
This paper presents a method for investigating ship emissions, the plume capture and analysis system (PCAS), and its application in measuring airborne pollutant emission factors (EFs) and particle size distributions. The current investigation was conducted in situ, aboard two dredgers (Amity: a cutter suction dredger and Brisbane: a hopper suction dredger) but the PCAS is also capable of performing such measurements remotely at a distant point within the plume. EFs were measured relative to the fuel consumption using the fuel combustion derived plume CO2. All plume measurements were corrected by subtracting background concentrations sampled regularly from upwind of the stacks. Each measurement typically took 6 minutes to complete and during one day, 40 to 50 measurements were possible. The relationship between the EFs and plume sample dilution was examined to determine the plume dilution range over which the technique could deliver consistent results when measuring EFs for particle number (PN), NOx, SO2, and PM2.5 within a targeted dilution factor range of 50-1000 suitable for remote sampling. The EFs for NOx, SO2, and PM2.5 were found to be independent of dilution, for dilution factors within that range. The EF measurement for PN was corrected for coagulation losses by applying a time dependant particle loss correction to the particle number concentration data. For the Amity, the EF ranges were PN: 2.2 - 9.6 × 1015 (kg-fuel)-1; NOx: 35-72 g(NO2).(kg-fuel)-1, SO2 0.6 - 1.1 g(SO2).(kg-fuel)-1and PM2.5: 0.7 – 6.1 g(PM2.5).(kg-fuel)-1. For the Brisbane they were PN: 1.0 – 1.5 x 1016 (kg-fuel)-1, NOx: 3.4 – 8.0 g(NO2).(kg-fuel)-1, SO2: 1.3 – 1.7 g(SO2).(kg-fuel)-1 and PM2.5: 1.2 – 5.6 g(PM2.5).(kg-fuel)-1. The results are discussed in terms of the operating conditions of the vessels’ engines. Particle number emission factors as a function of size as well as the count median diameter (CMD), and geometric standard deviation of the size distributions are provided. The size distributions were found to be consistently uni-modal in the range below 500 nm, and this mode was within the accumulation mode range for both vessels. The representative CMDs for the various activities performed by the dredgers ranged from 94-131 nm in the case of the Amity, and 58-80 nm for the Brisbane. A strong inverse relationship between CMD and EF(PN) was observed.
Resumo:
There has been a low level of interest in peripheral aberrations and corresponding image quality for over 200 years. Most work has been concerned with the second-order aberrations of defocus and astigmatism that can be corrected with conventional lenses. Studies have found high levels of aberration, often amounting to several dioptres, even in eyes with only small central defocus and astigmatism. My investigations have contributed to understanding shape changes in the eye with increases in myopia, changes in eye optics with ageing, and how surgical interventions intended to correct central refractive errors have unintended effects on peripheral optics. My research group has measured peripheral second- and higher-order aberrations over a 42° horizontal × 32° vertical diameter visual field. There is substantial variation in individual aberrations with age and pathology. While the higher-order aberrations in the periphery are usually small compared with second-order aberrations, they can be substantial and change considerably after refractive surgery. The thrust of my research in the next few years is to understand more about the peripheral aberrations of the human eye, to measure visual performance in the periphery and determine whether this can be improved by adaptive optics correction, to use measurements of peripheral aberrations to learn more about the optics of the eye and in particular the gradient index structure of the lens, and to investigate ways of increasing the size of the field of good retinal image quality.
Resumo:
Immigration has played an important role in the historical development of Australia. Thus, it is no surprise that a large body of empirical work has developed, which focuses upon how migrants fare in the land of opportunity. Much of the literature is comparatively recent, i.e. the last ten years or so, encouraged by the advent of public availability of Australian crosssection micro data. Several different aspects of migrant welfare have been addressed, with major emphasis being placed upon earnings and unemployment experience. For recent examples see Haig (1980), Stromback (1984), Chiswick and Miller (1985), Tran-Nam and Nevile (1988) and Beggs and Chapman (1988). The present paper contributes to the literature by providing additional empirical evidence on the native/migrant earnings differential. The data utilised are from the rather neglected Australian Bureau of Statistics, ABS Special Supplementary Survey No.4. 1982, otherwise known as the Family Survey. The paper also examines the importance of distinguishing between the wage and salary sector and the self-employment sector when discussing native/migrant differentials. Separate earnings equations for the two labour market groups are estimated and the native/migrant earnings differential is broken down by employment status. This is a novel application in the Australian context and provides some insight into the earnings of the selfemployed, a group that despite its size (around 20 per cent of the labour force) is frequently ignored by economic research. Most previous empirical research fails to examine the effect of employment status on earnings. Stromback (1984) includes a dummy variable representing self-employment status in an earnings equation estimated over a pooled sample of paid and self-employed workers. The variable is found to be highly significant, which leads Stromback to question the efficacy of including the self-employed in the estimation sample. The suggestion is that part of self-employed earnings represent a return to non-human capital investment, i.e. investments in machinery, buildings etc, the structural determinants of earnings differ significantly from those for paid employees. Tran-Nam and Nevile (1988) deal with differences between paid employees and the selfemployed by deleting the latter from their sample. However, deleting the self-employed from the estimation sample may lead to bias in the OLS estimation method (see Heckman 1979). The desirable properties of OLS are dependent upon estimation on a random sample. Thus, the 'Ran-Nam and Nevile results are likely to suffer from bias unless individuals are randomly allocated between self-employment and paid employment. The current analysis extends Tran-Nam and Nevile (1988) by explicitly treating the choice of paid employment versus self-employment as being endogenously determined. This allows an explicit test for the appropriateness of deleting self-employed workers from the sample. Earnings equations that are corrected for sample selection are estimated for both natives and migrants in the paid employee sector. The Heckman (1979) two-step estimator is employed. The paper is divided into five major sections. The next section presents the econometric model incorporating the specification of the earnings generating process together with an explicit model determining an individual's employment status. In Section 111 the data are described. Section IV draws together the main econometric results of the paper. First, the probit estimates of the labour market status equation are documented. This is followed by presentation and discussion of the Heckman two-stage estimates of the earnings specification for both native and migrant Australians. Separate earnings equations are estimated for paid employees and the self-employed. Section V documents estimates of the nativelmigrant earnings differential for both categories of employees. To aid comparison with earlier work, the Oaxaca decomposition of the earnings differential for paid-employees is carried out for both the simple OLS regression results as well as the parameter estimates corrected for sample selection effects. These differentials are interpreted and compared with previous Australian findings. A short section concludes the paper.